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Abstract 

In this work, the combined implementation of Adaptive Formulation Refinement (AFR) and 
Adaptive Mesh Refinement (AMR) strategies is proposed for the efficient and mesh objective 
evaluation of quasi-brittle fracture.  

A critical issue when computing localized structural failure is the spurious mesh bias 
dependence of the crack trajectories and collapse mechanisms that ensues when adopting the 
standard displacement-based finite element (FE) formulation. This problem is resolved by the 
introduction of the mixed strain/displacement FE formulation, which allows for local 
convergence, producing mesh objective results. 

On the one hand, the proposed AFR approach allows to adaptively switch between the standard 
and mixed FE formulations during the numerical simulation depending on the level of accuracy 
required in different regions of the domain. Within this framework, the more accurate mixed 
formulation is activated only in the areas where the crack onset and evolution take place, while 
the standard formulation is adopted for the rest of the structure. 

On the other hand, the adopted octree-based AMR strategy allows to adaptively refine only 
certain areas of the domain, also in function of the level of accuracy required. Using this 
methodology, it is possible to start the simulation with an initially relatively coarse mesh and 
adaptively introduce several levels of mesh refinement only in the regions of interest, where 
cracks appear and propagate. This approach guarantees the necessary mesh resolution to capture 
the fracture phenomenon accurately while further increasing the computational efficiency of the 
simulation. The subsequent adaptive coarsening of the FE mesh is also allowed. 

Structural failure and fracture propagation are reproduced via a local isotropic damage model. 
For this reason, a refinement/coarsening criterion defined in function of the equivalent effective 
stress is conveniently adopted with both AFR and AMR strategies.  

To assess the capabilities of the proposed method, a set of numerical simulations including 
benchmark problems and experiments is included. Results show the mesh objectivity and cost-
efficiency of the approach combining AFR and AMR in fracture problems. The proposed model 
is able to reproduce experimental crack paths, collapse mechanisms and force-displacement 
curves with accuracy and without spurious mesh bias dependence. 

The paper includes a comparative assessment of the performance of the proposed method and 
the standard FE formulation exclusively, showing the superior performance of the AFR 
methodology and its mesh objectivity. Convergence of the computed results when introducing 
different levels of AMR is also verified. Computational efficiency of the AFR and AMR 
techniques is specifically assessed. The combination of AFR and AMR approaches allows to 
provide accurate and mesh objective results in quasi-brittle fracture problems with very 
significant savings in computational cost. 

Keywords: Cracking, Structural failure, Mixed Finite Elements, Mesh adaptivity, Adaptive 
refinement.  
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 Introduction 1.
 

The numerical modelling of quasi-brittle fracture using the finite element method has been 
intensively studied over the last five decades. The issue of the spurious dependency of the 
computed crack paths with the FE mesh employed when adopting the standard displacement-
based formulation has been reported since the 1980s [1-4]. This has resulted in the adoption of 
many different alternative techniques to model fracture, both at the continuous and 
discontinuous levels, trying to overcome this issue. A comparative review of alternative 
methodologies can be found in references [5, 6]. 

The spurious mesh dependence that takes place when using the standard FE formulation from 
solid mechanics is caused by the lack of local convergence of stresses and strains. Depending on 
the cracking criterion, the trajectory of the fractures is governed by the stress fields present at 
the tip of the crack. These are inaccurately computed with standard FEs, resulting in unreliable 
and spuriously mesh biased results. This idea is underlined in references [6-9].  

In view of this, in previous works [7, 8, 10-15], the authors have proposed the use of the 
strain/displacement 𝜺𝜺/𝒖𝒖 finite element formulation to compute fracture with enhanced accuracy 
and mesh objectivity. In this FE formulation, the strain field is treated as an additional primary 
unknown of the problem and is interpolated independently from the displacements, rather than 
being computed by local differentiation at element level. This allows to improve the order of 
convergence and the accuracy of the computed strains and stresses. Specifically, it allows to 
achieve local convergence of the discrete strain and stress fields in the region of the crack tip, 
this being a critical feature to produce mesh bias objective results.  

For the same reason, by introducing the volumetric/deviatoric split into the solid mechanics 
problem, the 3-field displacement/deviatoric-strain/pressure 𝒖𝒖/𝒆𝒆/𝑝𝑝 FE formulation has been 
proposed, showing to produce more accurate and reliable computations with respect to the 
classical 𝒖𝒖/𝑝𝑝 FE in nonlinear problems under incompressible conditions with increased 
accuracy [16-19]. 

Therefore, on the one hand, despite the issue of producing spuriously mesh dependent results, 
the standard FE formulation is used in many applications due to its simplicity and affordable 
computational cost, which makes it convenient for large-scale analyses. On the other hand, the 
mixed 𝜺𝜺/𝒖𝒖 FE formulation has shown to be able of providing numerical results with mesh 
objectivity and enhanced accuracy, at the expense of treating the strains as additional nodal 
unknowns on the problem and introducing a relatively larger computational cost in the FE 
computation.  

Notwithstanding, in the specific problem of quasi-brittle fracture, structural failure occurs in the 
form of a few cracks appearing and evolving in an area representing a reduced part of the whole 
domain. Both the standard and mixed formulations are compatible and the use of the more 
accurate mixed formulation is required only in the small part of the total domain where crack 
propagation occurs while in the rest of the structure the less costly standard formulation may be 
adopted.  

In view of this, in the present work the Adaptive Formulation Refinement (AFR) strategy is 
implemented to adaptively switch between the standard and mixed 𝜺𝜺/𝒖𝒖 FE formulations in 
different regions of the domain depending on the required accuracy, so that an efficient 
computation framework is defined. The use of isotropic damage models to represent the 
degradation of the material allows to propose a criterion established in terms of the equivalent 
effective stress to decide on toggling between the standard and mixed formulations. The AFR 
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methodology was originally proposed in reference [20] for selectively activating the u/p and 
u/e/p mixed formulations in the simulation of friction stir welding (FSW) processes. 

In the present work, the use of the AFR strategy is proposed in conjunction with an Adaptive 
Mesh Refinement (AMR) framework. AMR has been often employed in alternative models for 
fracture [21-25]. The adopted approach uses an octree-based method [26-29] to further increase 
the efficiency of the numerical model by adaptively refining only the areas of the domain where 
crack propagation occurs. This allows to reproduce the phenomenon of fracture with proper FE 
resolution while maintaining a coarser mesh elsewhere. The method includes the adaptive 
refinement and coarsening of the FE mesh according to a criterion also defined in terms of the 
equivalent effective stress.  

The objectives of the present work are: (1) to establish the necessary features required in the 
implementation of the approach for quasi-brittle fracture based on the AFR and AMR strategies, 
(2) to demonstrate the capabilities of the proposed model in structural failure problems, (3) to 
show the ability of the model in reproducing experimental results in terms of collapse 
mechanisms, force-displacement curves and crack trajectories with precision, (4) to verify the 
capacity of the proposed approach combining the AFR and AMR methodologies to produce 
mesh objective results, (5) to assess the performance of the method with regard to accuracy and 
computational efficiency. 

The outline of the paper is the following. In Section 2 the mixed strain/displacement 𝜺𝜺/𝒖𝒖 finite 
element formulation used to solve the structural problem is introduced, including the strong and 
weak continuous forms as well as the corresponding discrete FE approximation The isotropic 
damage constitutive law considered to model cracking is presented as well. Section 3 details the 
AFR (Section 3.1) and AMR (Section 3.2) methodologies adopted. Section 4 includes the 
numerical simulations of structural failure performed to assess the capabilities of the proposed 
model. Section 5 closes the paper with the conclusions of the work. 
 

 Finite element formulation 2.
 

Many different methods for the FE computation of quasi-brittle fracture have been proposed in 
the literature. By far, the most employed one, both by academics and practitioners, is the crack 
band model, which relies on the use of the standard displacement-based FE formulation for 
continuum solid mechanics (CSM) problems. This approach, proposed by Rashid in 1968 [30], 
is applied together with a constitutive law featuring softening such as damage or plasticity to 
represent material failure at local level. In 1983, Bazant and Oh [31] introduced the objective 
evaluation of the softening behavior of the material with respect to the FE size, allowing to 
obtain results independent of the FE mesh size when computing fracture with the crack band 
model. 

Regrettably, the trajectories of the cracks computed with the standard displacement-based FE 
formulation are spuriously dependent on the orientation of the mesh employed for the analysis. 
This well-known issue since the 1980’s [1-4] renders the method useless in practice. 

Although not generally recognized, this is caused by the lack of local convergence of stresses 
and strains of the standard FE formulation [7, 8]. Near the vicinity of the tip of the crack, the 
stress and strain fields which are locally used to determine the path of the fracture are computed 
inaccurately, resulting in the spurious mesh bias dependence of the results. 

The use of the mixed strain/displacement 𝜺𝜺/𝒖𝒖 FE formulation for solid mechanics has been 
proposed by Cervera and coworkers [7, 8, 10-15] as an effective remedy. In this approach, the 
strains are treated as additional primary unknowns of the problem, together with the 
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displacements. The mixed formulation has proven to be locally convergent in terms of strains 
and stresses [7, 8] and, consequently, to produce mesh-bias independent results in cracking 
problems. 

Previous studies analyzing the comparative performance of the standard and mixed 𝜺𝜺/𝒖𝒖 
formulations have extensively shown, on the one hand, the inability of the standard FEs of 
delivering results without spurious mesh dependence on the FE orientation and, on the other 
hand, the capacity of the mixed FEs for consistently producing reliable mesh objective 
computations [13, 15]. Also, it has been demonstrated that convergence of the computed 
stresses, strains and mechanical dissipation is guaranteed with mixed FEs [18]. 

Notwithstanding, the mixed 𝜺𝜺/𝒖𝒖 FE formulation introduces the strain field as an additional 
primary unknown of the solid mechanics problem being solved, together with the 
displacements, resulting in a higher cost of the numerical simulations. In the present work the 
efficiency of the mixed FEM is increased by adaptively activating the mixed formulation only 
in the regions where local accuracy is required in order to obtain convergent and mesh objective 
results, while using the standard formulation elsewhere. Computational efficiency of the mixed 
FEM is further increased in the present work with the adoption of the Adaptive Formulation 
Refinement approach. 

The proposed approach preserves the local format of the problem. Fracture propagation is 
computed according to the local values of the stress field at the tip of the developing crack, 
without introducing gradient or higher order terms in the constitutive law or regularizing terms 
in the variational form. Note that, as it is pointed out in reference [6], crack models regularized 
at continuous level require the adoption of very fine meshes. This results in an important 
increase of the computational cost involved in the calculations when compared to the crack band 
model, much larger than the one ensuing from the use of the mixed 𝜺𝜺/𝒖𝒖 formulation [6]. For 
this reason in regularized approaches, such as phase-field models, adaptive mesh refinement 
capabilities are often adopted [21-25]. The issue of computational cost has also been addressed 
in reference [32] by computing the nodal phase-field variable only in a predefined reduced sub-
domain where cracking occurs rather than in the whole structure. An appraisal of the 
computational costs involved in the alternative methods proposed for the evaluation of localized 
structural failure can be found in the comparative study of reference [6].  
 

Continuous formulation 
 

In the rest of this section, the mixed strain/displacement 𝜺𝜺/𝒖𝒖 FE formulation employed for the 
mesh objective evaluation of quasi-brittle failure is presented. For additional details the 
interested reader is referred to references [7, 8, 11, 12, 14, 33-35]. 

The displacements 𝒖𝒖 and the strains 𝜺𝜺 are adopted as primary unknowns of the nonlinear solid 
mechanics problem. The compatibility equation relates these two fields in the way: 

𝜺𝜺 = 𝐒𝐒 𝒖𝒖 (1) 

𝐒𝐒 being the differential symmetric gradient operator.  

Also, the Cauchy momentum equation associates the stresses 𝝈𝝈 and the body forces 𝐟𝐟 

𝐒𝐒𝑇𝑇𝝈𝝈+ 𝐟𝐟 = 𝟎𝟎 (2) 

𝐒𝐒𝑇𝑇 being the differential divergence operator, adjoint to the 𝐒𝐒 in Eq. (1).  

In addition, the stresses and strains are connected through the constitutive law, established in 
secant form as 



5 
 

𝝈𝝈 = 𝐃𝐃 𝜺𝜺 (3) 

where 𝐃𝐃 = 𝐃𝐃(𝑑𝑑) is the (nonlinear) secant constitutive matrix, expressed in function of the 
damage index, 𝑑𝑑. 𝐃𝐃 needs to be symmetric and positive semidefinite from thermodynamic 
considerations. 

From the three previous equations, the strong form of the problem is obtained as follows: firstly, 
Eq. (1) is pre-multiplied by 𝐃𝐃, and secondly, Eq. (3) is introduced into Eq. (2) 

−𝐃𝐃𝜺𝜺 + 𝐃𝐃𝐒𝐒𝒖𝒖 = 𝟎𝟎 (4) 

𝐒𝐒𝑇𝑇(𝐃𝐃𝜺𝜺) + 𝐟𝐟 = 𝟎𝟎 (5) 

Then the corresponding weak form is derived by: (i) multiplying Eqs. (4) and (5) by vectors of 
virtual strains and virtual displacements respectively, (ii) integrating both equations over the 
spatial domain and (iii) applying the Divergence Theorem to the first term of Eq. (5). This 
results in the following system of equations: 

−� 𝛿𝛿𝜺𝜺𝑇𝑇𝐃𝐃𝜺𝜺 dΩ
Ω

+� 𝛿𝛿𝜺𝜺𝑇𝑇𝐃𝐃𝐒𝐒𝒖𝒖 dΩ
Ω

= 0   ∀𝛿𝛿𝜺𝜺 (6) 

� (𝐒𝐒𝛿𝛿𝒖𝒖)𝑇𝑇(𝐃𝐃𝜺𝜺)dΩ
Ω

= � 𝛿𝛿𝒖𝒖𝑇𝑇𝐟𝐟 dΩ
Ω

+ � 𝛿𝛿𝒖𝒖𝑇𝑇𝒕̅𝒕 dΓ
Γ𝑡𝑡

   ∀𝛿𝛿𝒖𝒖 (7) 

Note that the boundary Γ of the domain is divided in two parts, Γ𝑢𝑢 and Γ𝑡𝑡, corresponding to the 
Dirichlet and Newmann boundary conditions.  

The variational form of the problem consists in finding the strain and displacement fields 𝜺𝜺 and 
𝒖𝒖 complying with the system of Eqs. (6)-(7) and conforming to the boundary condition 𝒖𝒖 = 𝟎𝟎 
in Γ𝑢𝑢 given the arbitrary virtual displacement vector 𝛿𝛿𝒖𝒖, which is also null on Γ𝑢𝑢, and the 
arbitrary virtual strain vector 𝛿𝛿𝜺𝜺. Note as well that the problem is symmetric. 
 

FE approximation 
 

Once the spatial domain Ω is discretized into nonintersecting finite elements Ω𝑒𝑒, such that 
Ω =∪ Ω𝑒𝑒, the displacement 𝒖𝒖 and the strain 𝜺𝜺 are approximated using independent 
interpolations 𝒖𝒖� and 𝜺𝜺�. 

𝒖𝒖 ≅ 𝒖𝒖� = 𝑵𝑵𝑢𝑢𝑼𝑼 (8) 

𝜺𝜺 ≅ 𝜺𝜺� = 𝑵𝑵𝜀𝜀𝑬𝑬 (9) 

where 𝑼𝑼 and 𝑬𝑬 are vectors containing the nodal values of the displacements and the strains. 𝑵𝑵𝑢𝑢 
and 𝑵𝑵𝜀𝜀 are the matrices containing the interpolation functions employed in the FE 
approximation. 

When adopting a mixed FE, the interpolation functions employed needs to fulfill the inf-sup 
stability condition to avoid spurious oscillations in the computed solution [36-38]. This 
condition is not satisfied when equal order linear interpolation functions are considered for 𝑵𝑵𝑢𝑢 
and 𝑵𝑵𝜀𝜀 [37, 39, 40]. In order to use linear interpolation functions for both fields while avoiding 
spurious oscillations in the computed solution, a stabilization procedure is introduced. The 
proposed method follows the Variational Multiscale Stabilization approach [41-45]. 

The procedure is to substitute the strain field approximation in Eq. (9) with the following one 
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𝜺𝜺 ≅ 𝜺𝜺� = 𝑵𝑵𝜀𝜀𝑬𝑬 + 𝜏𝜏𝜀𝜀(𝑩𝑩𝑢𝑢𝑼𝑼− 𝑵𝑵𝜀𝜀𝑬𝑬) = (1 − 𝜏𝜏𝜀𝜀)𝑵𝑵𝜀𝜀𝑬𝑬 + 𝜏𝜏𝜀𝜀𝑩𝑩𝑢𝑢𝑼𝑼 (10) 

where 𝜏𝜏𝜀𝜀 is a stabilization parameter such that 0 ≤ 𝜏𝜏𝜀𝜀 ≤ 1. 𝑩𝑩𝑢𝑢 is the standard compatibility 
matrix, defined as 𝑩𝑩𝑢𝑢 = 𝐒𝐒𝑵𝑵𝑢𝑢. Using 𝜏𝜏𝜀𝜀 = 0 corresponds to adopting the strain interpolation of 
the non-stabilized mixed problem, while the case 𝜏𝜏𝜀𝜀 = 1 recovers the strain interpolation of the 
standard displacement-based formulation from solid mechanics. 

References [7, 8, 45] have shown that the optimal convergence rate of the problem is attained 
when considering   𝜏𝜏𝜀𝜀 = 𝑐𝑐𝜀𝜀  ℎ/𝐿𝐿, where 𝑐𝑐𝜀𝜀 = 𝒪𝒪(1) is an arbitrary constant, 𝐿𝐿 is a reference size 
of the structure and ℎ is the FE size. In the present work, 𝑐𝑐𝜀𝜀 = 1 is used. When adaptive mesh 
refinement is introduced according to the procedure described in the following sections, the FE 
size ℎ used to compute  𝜏𝜏𝜀𝜀 is adjusted accordingly. 

Also, taking into consideration the definition of the strain field in Eq. (10), the value of the 
crack bandwidth 𝑏𝑏 becomes: 

𝑏𝑏 = (1 − 𝜏𝜏𝜀𝜀)2ℎ + 𝜏𝜏𝜀𝜀ℎ = (2 − 𝜏𝜏𝜀𝜀)ℎ (11) 

By introducing the interpolation function proposed in Eqs. (8) and (10) into the weak form of 
the problem (6)-(7), the following algebraic system of equations results 

�
−𝑴𝑴𝝉𝝉 𝑮𝑮𝝉𝝉
𝑮𝑮𝝉𝝉𝑇𝑇 𝑲𝑲𝝉𝝉

� �𝑬𝑬𝑼𝑼� = �𝟎𝟎𝑭𝑭� (12) 

where [𝑬𝑬 𝑼𝑼]𝑇𝑇 is the vector containing the nodal values of the unknowns of the problem, 
strains and displacements, and 𝑴𝑴𝝉𝝉 = (1 − 𝜏𝜏𝜀𝜀)𝑴𝑴, 𝑮𝑮𝝉𝝉 = (1 − 𝜏𝜏𝜀𝜀)𝑮𝑮 and 𝑲𝑲𝝉𝝉 = 𝜏𝜏𝜀𝜀𝑲𝑲. 𝑴𝑴 is a mass-
like projection matrix, 𝑮𝑮 is the discrete gradient matrix, 𝑲𝑲 is a stiffness-like matrix and 𝑭𝑭 is the 
vector of external nodal forces: 

𝑴𝑴 = � 𝑵𝑵𝜀𝜀
𝑇𝑇𝐃𝐃𝑵𝑵𝜀𝜀  dΩ

Ω
 (13) 

𝑮𝑮 = � 𝑵𝑵𝜀𝜀
𝑇𝑇𝐃𝐃𝑩𝑩𝑢𝑢 dΩ

Ω
 (14) 

𝑲𝑲 = � 𝑩𝑩𝑢𝑢
𝑇𝑇𝐃𝐃𝑩𝑩𝑢𝑢 dΩ

Ω
  (15) 

𝑭𝑭 = � 𝑵𝑵𝑢𝑢
𝑇𝑇𝐟𝐟 dΩ

𝛀𝛀
+ � 𝑵𝑵𝑢𝑢

𝑇𝑇𝒕̅𝒕 dΓ
Γt

 (16) 

The use of the mixed strain/displacement FE formulation in CSM problems presents the 
following advantages: 

• It does not require any specific FE interpolation and can be used with triangles, 
quadrilaterals, tetrahedra, hexahedra and prisms [11].  

• It does not need any specific development for implementation in 3D [11]. 
• It can be employed with any suitable constitutive behavior [12, 14, 33].  

When used for problems involving quasi-brittle fracture: 

• Previous works have shown its applicability with isotropic and orthotropic damage 
models including crack closure-reopening effects and irreversible straining [12, 14]. 
Plasticity constitutive laws have also been adopted within this FE formulation [33, 46-
48].  
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• It can accurately reproduce the structural size effect phenomenon [15]. 
• It can naturally reproduce branching and intersecting cracks without any additional 

specific developments [6].  
 

Damage constitutive laws 
 

In this work, cracks are modelled using an isotropic continuum damage model, a reformulation 
of the original crack band model. Alternatively, orthotropic damage models can be adopted [12, 
14]. 

Two versions of the constitutive law are proposed, one featuring the Rankine damage criterion 
and the other one with the Drucker-Prager damage criterion. 

For an isotropic damage model, the constitutive law in Eq. (3) is expressed as 

𝝈𝝈 = 𝐃𝐃(𝑑𝑑) 𝜺𝜺 = (1 − 𝑑𝑑) 𝐃𝐃0𝜺𝜺 (17) 

where 𝐃𝐃 =  𝐃𝐃(𝑑𝑑) is the secant constitutive matrix, written in terms of the internal scalar damage 
variable 𝑑𝑑 which represents the degradation state of the material. 𝐃𝐃0 is the initial elastic 
constitutive matrix of the undamaged material, which is defined for initially isotropic elastic 
materials as a function of the initial values of Young’s modulus 𝐸𝐸 and Poisson’s ratio 𝜈𝜈. 𝐃𝐃 is 
symmetric and positive semidefinite for 0 ≤ 𝑑𝑑 ≤ 1. 

The damage criterion 𝔽𝔽 is introduced as 

𝔽𝔽�𝜎𝜎�𝑒𝑒𝑒𝑒 , 𝑟𝑟� = 𝜎𝜎�𝑒𝑒𝑒𝑒(𝝈𝝈�)− 𝑟𝑟 = 0 (18) 

where the effective stress 𝝈𝝈� is introduced as 𝝈𝝈� = 𝐃𝐃0 𝜺𝜺, following the hypothesis of strain 
equivalence, the equivalent effective stress 𝜎𝜎�𝑒𝑒𝑒𝑒 is defined in function of the damage criterion 
considered and 𝑟𝑟 is the current damage threshold. 

For the Rankine damage criterion, whose surface is plotted in Figure 1a, the equivalent effective 
stress 𝜎𝜎�𝑒𝑒𝑒𝑒 is computed in function of 𝝈𝝈� as  

𝜎𝜎�𝑒𝑒𝑒𝑒(𝝈𝝈�) = 〈𝜎𝜎�1〉 (19) 

where 𝜎𝜎�1 is the major principal effective stress and 〈·〉 are the Macaulay brackets, such that 
〈𝑥𝑥〉 = 𝑥𝑥 if 𝑥𝑥 ≥ 0 and 〈𝑥𝑥〉 = 0 if 𝑥𝑥 < 0. 

Alternatively, for the Drucker-Prager damage criterion 

𝜎𝜎�𝑒𝑒𝑒𝑒(𝝈𝝈�) =
�3𝐽𝐽2 + 𝛼𝛼𝐼𝐼1

1 + 𝛼𝛼
 (20) 

where 𝐼𝐼1 and 𝐽𝐽2 are defined in function of 𝝈𝝈� as the first and second effective stress invariants 
and 𝛼𝛼 is calculated in function of the tensile and compressive strengths of the material 𝑓𝑓𝑡𝑡 and 𝑓𝑓𝑐𝑐 

𝛼𝛼 = �
𝑓𝑓𝑐𝑐
𝑓𝑓𝑡𝑡
− 1� �

𝑓𝑓𝑐𝑐
𝑓𝑓𝑡𝑡

+ 1��  

Other damage criteria may be readily used, as shown in references [12, 14].  

The initial value of the damage threshold 𝑟𝑟 is the tensile strength of the material 𝑓𝑓𝑡𝑡. Its current 
value at time 𝑡𝑡 is determined according to the Kuhn-Tucker optimality and consistency 
conditions, guaranteeing the positiveness of the dissipation and the irreversibility of damage. 
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𝑟𝑟 = max  �𝑓𝑓𝑡𝑡, max𝜎𝜎�𝑒𝑒𝑒𝑒(𝑡̂𝑡)�      𝑡̂𝑡 ∈ [0, 𝑡𝑡] (21) 

In the present work considers that the internal damage variable 𝑑𝑑 follows an exponential 
softening behavior, as shown in Figure 1b: 

𝑑𝑑 = 1 −
𝑓𝑓𝑡𝑡
𝑟𝑟

exp�−2𝐻𝐻𝑑𝑑
〈𝑟𝑟 − 𝑓𝑓𝑡𝑡〉
𝑓𝑓𝑡𝑡

� (22) 

where 𝐻𝐻𝑑𝑑 is a softening parameter controlling the rate of degradation of the material.  

Alternative softening functions may be used if deemed necessary. They are required to 
monotonically decrease from 1 to 0 as the damage threshold 𝑟𝑟 evolves from 𝑓𝑓𝑡𝑡 to infinity. Also, 
the objective definition of the mechanical dissipation needs to be established for each function. 

 
Figure 1. Damage model: (a) Rankine damage surface and (b) softening function 

Energy conservation considerations link the softening parameter 𝐻𝐻𝑑𝑑 in Eq. (22) to material 
properties via Irwin’s material length ℒ = 𝐸𝐸𝐺𝐺𝑓𝑓/𝑓𝑓𝑡𝑡

2 and the crack bandwidth 𝑏𝑏. 

𝐻𝐻𝑑𝑑 =
𝑏𝑏

2ℒ − 𝑏𝑏
 (23) 

In this way, the proposed model is able to provide results independent of the crack bandwidth, 
guaranteeing the objective energy dissipation during the cracking process. The crack bandwidth 
is computed as in Eq. (11), which yields 𝑏𝑏 = ℎ when using the standard FE formulation 
(𝜏𝜏𝜀𝜀 = 1). 
 

 Adaptivity in quasi-brittle structural failure computations 3.
 

In this section, the approaches employed for introducing the adaptive mesh refinement (AMR) 
technique and the adaptive FE formulation refinement (AFR) into the FE computations are 
presented. They are both implemented with the aim of further increasing the computational 
efficiency of the proposed mixed 𝜺𝜺/𝒖𝒖 FE method for computing quasi-brittle fracture while 
preserving its capacity for producing convergent results with enhanced accuracy and mesh 
objectivity. 
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3.1. Adaptive formulation refinement 
 

The present work uses the adaptive application of the standard and mixed strain/displacement 
FE formulations, as depicted in Figure 2.  

References [34, 49] underline the fact that both formulations are compatible. In order to ensure 
the consistency of the AFR approach in the classical Rayleigh-Ritz sense, the continuity of the 
interpolated displacement field across element edges needs to be ensured. This requirement is 
fulfilled when the same interpolation functions are adopted for the displacements for both the 
standard and mixed formulations. For further details references [34, 49] are recommended. 

For this reason, the less costly standard displacement-based formulation may be adaptively 
switched with the enhanced accuracy mixed formulation only when and where necessary. In the 
following, the main features of the adopted AFR strategy are presented. For additional details, 
the original reference [20] introducing the method is recommended.  

 
Figure 2. Finite element mesh combining standard and mixed formulations 

 

Strain and stress computations 
 

Strains are computed differently when using the standard and mixed FE formulation. For this 
reason, when introducing the AFR technique, the consistency of the strain (and stress) fields 
computed with both formulations needs be addressed. 
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Figure 3. Computation of strains at integration points (represented with red crosses) 

 

As indicated in Figure 3, in the standard displacement-based formulation, strains are evaluated 
at the integration points through local differentiation at element level using the nodal 
displacements 

𝜺𝜺 ≅ 𝜺𝜺� = 𝐒𝐒𝒖𝒖� = 𝐒𝐒𝑵𝑵𝑢𝑢𝑼𝑼 = 𝑩𝑩𝑢𝑢𝑼𝑼 (24) 

Then, stresses are locally computed using these strains according to the constitutive law of the 
material.  

Contrariwise, in the mixed formulation, strains are additional primary unknowns, calculated at 
the nodes. Then, the strains at the integration points are computed through the interpolation of 
the nodal values, as shown in Figure 3, and stresses are also computed locally 

𝜺𝜺 ≅ 𝜺𝜺� = 𝑵𝑵𝜀𝜀𝑬𝑬 + 𝜏𝜏𝜀𝜀(𝑩𝑩𝑢𝑢𝑼𝑼− 𝑵𝑵𝜀𝜀𝑬𝑬) = (1 − 𝜏𝜏𝜀𝜀)𝑵𝑵𝜀𝜀𝑬𝑬 + 𝜏𝜏𝜀𝜀𝑩𝑩𝑢𝑢𝑼𝑼 (25) 
 

Refinement criterion 
 

Several refinement criteria may be adopted in the AFR strategy. The general requirements that 
these need to fulfill are: 

1. To be adaptively applicable: the criterion should not require the a priori definition of the 
domains in which standard and mixed formulations are active. The areas of standard 
and mixed formulations should be automatically defined by the criterion. 
 

2. To allow decision on both formulation refinement, switching from standard to mixed, 
and formulation derefinement, reversal from mixed to standard. 
 

3. To designate the areas of standard and mixed formulations in an accurate and efficient 
manner: to reduce as much as possible the extent of the mixed formulation while 
preserving it in the required regions. 

The criterion adopted to switch between the standard and mixed formulations is established in 
terms of the equivalent effective stress 𝜎𝜎�𝑒𝑒𝑒𝑒, introduced in the damage constitutive law in Section 
2. In the present work the Rankine and Drucker-Prager criteria are adopted and 𝜎𝜎�𝑒𝑒𝑒𝑒 is 
determined according to Eqs. (19) and (20) respectively. Then, the ratio 𝑅𝑅 is defined as 

𝑅𝑅 =
𝜎𝜎�𝑒𝑒𝑒𝑒
𝑓𝑓𝑡𝑡

 (26) 
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where 𝑓𝑓𝑡𝑡 is the tensile strength of the material.  

If the ratio 𝑅𝑅 exceeds a certain limit 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 (e.g. 75%), the mixed formulation is activated. Also, 
when 𝑅𝑅 drops below a certain threshold 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 (e.g. 20 %), the standard formulation is recovered. 
The switching back from mixed to the standard formulation is not allowed in elements where 
damage has developed. Therefore, the criterion can be expressed as 

𝐼𝐼𝐼𝐼 𝜎𝜎�𝑒𝑒𝑒𝑒 ≥ 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑡𝑡                              →    𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹𝐹𝐹       

𝐼𝐼𝐼𝐼 𝜎𝜎�𝑒𝑒𝑒𝑒 < 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑡𝑡   𝐴𝐴𝐴𝐴𝐴𝐴   𝑑𝑑 = 0   →    𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐹𝐹𝐹𝐹 
(27) 

This AFR criterion automatically defines the regions where the standard and mixed 
formulations are activated. If in an element the refinement criterion is fulfilled in one of the 
integration points, the whole element is treated as mixed and the strain degrees of freedom are 
activated in all its nodes. Conversely, if in all the integration points of an element the 
derefinement criterion is met, the standard formulation is reactivated for that particular element. 
Note that the criterion allows the possibility of having several distinct subdomains with standard 
and mixed elements. Note also that in the original work [20] formulation derefinement was not 
contemplated. 
 

Adaptive formulation solution approach 
 

The approach employed to solve the problem with Adaptive Formulation Refinement is the 
following. According to the proposed refinement criterion, an array indicating for each node 
which degrees of freedom are active and inactive is updated at each time-step. Elemental 
matrices are computed and assembled in function of the active formulation. If in a certain node 
the mixed formulation is active, both displacement and strain degrees of freedom are 
considered. Instead, if the standard formulation is active, the strain degrees of freedom are not 
activated and only the displacement degrees of freedom are taken into consideration. In this 
strategy, all the nodes in the interface are treated as mixed, as can be seen in Figure 2. The 
proposed methodology does not require additional considerations for interface nodes; 
contributions from different elements are simply assembled in the standard manner. 

The solver stores the global matrix in a compressed format. In this way, only the non-zero 
entries of the matrix, which are located in function of its graph, are considered. The graph of the 
matrix is built by DOFs, according to the array labeling the active degrees of freedom of the 
problem. As demonstrated in reference [20], this approach greatly reduces the computational 
time involved, as only the active degrees of freedom are considered when building and solving 
the problem. This method is applicable both for direct and iterative solvers.  
 

3.2. Adaptive mesh refinement 
 

The AMR strategy is included to further increase the efficiency of the model for fracture 
conferred by the AFR approach. The AMR method allows to begin the computation with an 
initial relatively coarse mesh requiring a low calculation effort. The mesh is progressively 
adaptively refined only in the regions where cracks progress to suitably represent the 
phenomenon of fracture while the coarse mesh is maintained elsewhere. The AMR 
methodology also includes the subsequent adaptive mesh coarsening of the undamaged 
elements after the crack has already appeared in the area. An octree refinement strategy is 
employed, according to the methodology described in references [26-29]. In problems where the 
crack trajectories are not known a priori this approach avoids the need for initial fine meshes to 
calculate fracture.  
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Refinement criterion 
 

A similar refinement criterion as in AFR, based on the same ratio 𝑅𝑅 between the equivalent 
effective stress 𝜎𝜎�𝑒𝑒𝑒𝑒 and the material tensile strength 𝑓𝑓𝑡𝑡, as defined by Eq. (26), is adopted for 
ARM. If the ratio 𝑅𝑅 exceeds a certain designated limit 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 (e.g. 50%), the mesh is refined. 
Also, if the ratio 𝑅𝑅 decreases below another set value 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 (e.g. 10%), coarsening takes place. 
Refinement may take place up to a certain predetermined level. Coarsening is not allowed in 
damaged elements. Hence, the criterion can be stated in the following way: 

𝐼𝐼𝐼𝐼 𝜎𝜎�𝑒𝑒𝑒𝑒 ≥ 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑡𝑡                              →    𝑀𝑀𝑀𝑀𝑀𝑀ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝐼𝐼𝐼𝐼 𝜎𝜎�𝑒𝑒𝑒𝑒 < 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑡𝑡   𝐴𝐴𝐴𝐴𝐴𝐴   𝑑𝑑 = 0   →    𝑀𝑀𝑀𝑀𝑀𝑀ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
(28) 

Note that the values of the thresholds introduced for the refinement criteria in AMR and AFR in 
the numerical simulations may be different. This means that AMR and AFR may be activated 
independently, depending on the selected 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚, 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚, 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚, 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 parameters. 

Analogously to AFR, mesh refinement takes place in an element if the refinement criterion is 
reached in one of the integration points; an additional refinement level is introduced at every 
time step until the predefined maximum number of refinement levels is attained. Contrarily, 
coarsening occurs if all the integration points of the element meet the coarsening criterion. 
 

Adaptive finite element approach 
 

In the following, a brief overview of the FE adaptivity strategy employed is provided. For 
additional details, references [26-29] are recommended. 

The hierarchical octree refinement strategy defines several levels of FEs, represented in Figures 
4 and 5. The original FEs are labeled with the level zero and are the parents to the level one FEs 
(which are the children of the zero level FEs). Level one FEs are the parents of level two FEs, 
etc.  

 

 
Figure 4. Finite element hierarchy in the octree-based AMR strategy 
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Figure 5. Depiction of the octree-based refinement process in a finite element 

When a new mesh is generated during the AMR process, the information from the previous 
mesh is projected onto the new one. The nodal displacements of existing nodes are preserved. 
The values corresponding to new nodes are interpolated from the values of existing nodes. If the 
mixed FE formulation is active for the parent element, the same procedure is followed for the 
nodal strain field. The historical variables of the damage constitutive law of new nodes are set to 
the values corresponding to the initially undamaged material. Since coarsening is allowed only 
in undamaged elements, no loss of information related to the historical variables of the 
nonlinear constitutive behavior occurs. Setting proper limits for the refinement criterion also 
avoids the refinement of already damaged elements. With regard to the combination of AMR 
with AFR, the array indicating which degrees of freedom are active and inactive for each node 
is then updated.  

The presence of hanging nodes in the octree refined FE mesh, depicted in Figure 6, needs to be 
properly treated. In the present work, the treatment of hanging nodes proposed in references [26, 
27] is followed. According to this approach, the following modification of the shape functions 
of the parent elements is performed when hanging nodes are present so that the FE 
approximation becomes conforming: 

𝑵𝑵𝑝𝑝
∗ (𝒙𝒙) = 𝑵𝑵𝑝𝑝(𝒙𝒙) + � 𝑵𝑵𝑝𝑝(𝒙𝒙𝑖𝑖)𝑵𝑵𝑐𝑐,𝑖𝑖(𝒙𝒙)

𝑛𝑛𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖=1

 (29) 

where 𝑵𝑵𝑝𝑝 and 𝑵𝑵𝑝𝑝
∗  are the original and modified parent interpolation functions, 𝑵𝑵𝑐𝑐 are the 

original children interpolation function, 𝑛𝑛𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 is the number of hanging children nodes and 𝒙𝒙𝑖𝑖 
indicates the position of hanging child 𝑖𝑖. The degrees of freedom of hanging nodes are 
eliminated from the FE system being solved. Their contributions are added to the nodes of the 
parent elements according to the modified shape functions, Eq. (29). The values of the 
unknowns at the hanging nodes are obtained by interpolation from nodes of the parent element. 
Additional details are provided in the original references [26, 27]. 

The combination of the AFR and AMR methodologies is fairly straightforward and does not 
require special additional considerations. 
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Figure 6. Regular and hanging nodes in the FE mesh 

 

 Numerical simulation of quasi-brittle structural failure 4.
 

In this section the numerical simulation of experimental tests and benchmark case studies 
reported in the literature featuring quasi-brittle structural failure is performed using the proposed 
model including mesh and FE formulation adaptivity. The selected cases are often employed for 
the validation of numerical models.  

The objectives of this section are (i) to demonstrate the mesh objectivity of the proposed model 
based on the AFR and AMR approaches, (ii) to assess the cost-efficiency of the proposed 
method compared to the standard displacement-based FEs as well as the non-adaptive mixed 
FEs, (iii) to show proper convergence of the results to the appropriate solution. 

The computations are performed with an enhanced version of the finite element code FEMUSS 
while pre- and post- processing are performed with GID [50], both developed at the 
International Center for Numerical Methods in Engineering (CIMNE). Convergence in each 
load step is attained when the ratio between the norm of residual forces and the norm of total 
external forces is lower than 10-5. 
 

4.1. Garcia-Alvarez beams 
 

In this section, the numerical simulation of the Garcia-Alvarez experiments, reported in 
reference [51], is performed. The work [51] includes the computational modelling of the tests 
using interface elements. This problem has also been simulated with the phase-field regularized 
cohesive zone model (PF-CZM) by Wu and coworkers [52]. In previous works the results 
obtained using mixed FE have been compared with the experiments [15] and with phase-field 
based computations [6, 53]. 
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Figure 7. Geometry of the Garcia-Alvarez beams 

 

 

Young’s Modulus 33.8·109 Pa 
Poisson’s Ratio 0.2 
Tensile Strength 3.5·106 Pa 

Tensile Fracture Energy 80 J/m2 

Table 1. Material parameters of the Garcia-Alvarez beams 

 

 
Figure 8. Detail of the initial mesh used for the Garcia-Alvarez beams in the area of the notch 
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Figure 9. Force-displacement curves of the Garcia-Alvarez beams for the 3 sizes using different levels of 

adaptive mesh refinement. Eccentricities (top) 0.625D and (bottom) 0.3125D 
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Figure 10. Computed crack trajectories of the Garcia-Alvarez beams with different levels of mesh refinement, 

eccentricity 0.625D, for sizes (top) D = 320 mm, (center) D = 160 mm and (bottom) D = 80 mm 

In these experiments, geometrically similar beams of different sizes are subjected to three-point 
bending tests in order to study the structural size effect. The geometry of the beams is detailed 
in Figure 7. Three different structural sizes are considered: beams with depths 𝐷𝐷 of 320 mm, 
160 mm and 80 mm. A constant span-to-depth ratio of 2.5 is taken. In the experiments three 
different series are considered, by varying the position of the notch in the specimen, so that 
mixed-mode fracture occurs. Specifically, notch eccentricities 𝜇𝜇𝜇𝜇 of 0.625𝐷𝐷, 0.3125𝐷𝐷 and 0.0𝐷𝐷 
were used. The thickness of the beams in all the cases is 50 mm. A vertical force was applied at 
the top midpoint of the beams as indicated in Figure 7. The computational simulations are 
performed under CMOD control, reproducing the conditions of the experiment. Table 1 shows 
the material properties used for the beams, together with the Rankine damage surface. 

 



18 
 

 
Figure 11. Computed crack trajectories of the Garcia-Alvarez beams with different levels of mesh refinement, 

eccentricity 0.3125D, for sizes (top) D = 320 mm, (center) D = 160 mm and (bottom) D = 80 mm 

The objective of this section is to validate the proposed AMR and AFR capabilities introduced 
in this work. For this, the numerical simulation of the series with notch eccentricities 𝜇𝜇𝜇𝜇 of 
0.625𝐷𝐷 and 0.3125𝐷𝐷 is performed, with concurrent adaptive FE formulation refinement and 
different levels of adaptive mesh refinement, up to 2 levels. 

The initial meshes adopted to perform the simulation, for the two eccentricity cases and all the 
sizes, have approximately 31,000 elements, resulting from using a mesh size ℎ of 10-2𝐷𝐷. The 
notch is modelled with thickness ℎ, as is shown in Figure 8. The original mesh is fine enough to 
obtain satisfactory results; it is chosen to show that proper convergence occurs with different 
levels of adaptive mesh refinement. 

In Figure 9, the force-displacement curves computed for the two series and for all the sizes are 
shown. It can be seen that the results with the different levels of adaptive mesh refinement (from 
no mesh refinement to 2 levels of mesh refinement) are practically overlapping. This shows that 
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results have reached convergence in terms of mesh size. All results compare well with the 
experiments for all the sizes and for all the cases. This is remarkable, as for all the simulations 
the same material properties are used. This confirms the results in reference [15] where the 
ability of the mixed finite element method in reproducing the structural size effect is 
demonstrated. 

Figures 10 and 11 compares the computed crack trajectories for all the sizes of the two beam 
series with the corresponding experiments. It can be seen that all the numerical results are 
within the experimental range. The simulations with the different levels of mesh refinement 
considered are practically matching, demonstrating that convergence of the results has been 
achieved. No sign of spurious mesh dependence is observed when using the AFR method 
combining standard and mixed FEs.  

   

    

  
Figure 12. Computed (top) damage and (bottom) strain contours of the Garcia-Alvarez beams, D = 80 mm 

specimen, eccentricity 0.625D series, with (left) no AMR, (center) 1 level of AMR and (right) 2 levels of AMR 

In Figure 12 the computed damage and strain fields for the 𝐷𝐷 = 80 𝑚𝑚𝑚𝑚 sized specimen, 
eccentricity 0.625𝐷𝐷, are displayed. A comparison between results obtained with (i) no AMR, 
(ii) 1 level of AMR and (iii) 2 level of AMR is made. In all cases, damage is plotted within the 
range that matches the corresponding localizing strains. It can be seen both in the damage and 
strain fields how the crack bandwidth is reduced when the FE size decreases. Notwithstanding, 
the correct energy dissipation with respect to the FE size is enforced by the Crack Band Theory, 
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as it can be seen in the force-displacement curves in Figure 9; also, practically the same crack 
trajectories are obtained, as shown in Figure 10.  

 

 

  
Figure 13. Computed damage contour with the detail of the mesh in the notched region at the early stages of 

the simulation with (top) no AMR, (center) 1 level of AMR and (bottom) 2 levels of AMR 

 

     
Figure 14. Evolution of the area where standard (in blue) and mixed (in red) formulations are adopted during 

the simulation with 2 levels of AMR of the Garcia-Alvarez beams, eccentricity 0.625D, D = 80 mm 
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Figure 13 shows the detail of the FE mesh in the region of the notch at the early stages of the 
simulation without AMR and with 1 and 2 levels of AMR. It can be seen how the FE mesh is 
refined only in the area where the crack progresses according to the adaptive mesh refinement 
criterion defined in Section 3.  

In the computations of the Garcia-Alvarez beams, mesh refinement takes place when the 
equivalent effective stress 𝜎𝜎�𝑒𝑒𝑒𝑒 reaches a value higher than 0.5𝑓𝑓𝑡𝑡 and coarsening occurs when 
𝜎𝜎�𝑒𝑒𝑒𝑒 attains a value lower than 0.1𝑓𝑓𝑡𝑡. 

Figure 14 shows the evolution of the area where standard and mixed FE formulations are active 
for different time steps of the simulation of the Garcia-Alvarez beam, 𝐷𝐷 = 80 𝑚𝑚𝑚𝑚 sized 
specimen, eccentricity 0.625𝐷𝐷. With the criterion defined in Section 3, mixed 𝜺𝜺/𝒖𝒖 FEs are 
activated only in a small region near the developing crack.  

In all the simulations of the Garcia-Alvarez beams, formulation refinement, i.e. activation of the 
mixed 𝜺𝜺/𝒖𝒖 FE, occurs when the equivalent effective stress 𝜎𝜎�𝑒𝑒𝑒𝑒 reaches a value higher than 
0.75𝑓𝑓𝑡𝑡. Formulation derefinement, i.e. deactivation of the mixed 𝜺𝜺/𝒖𝒖 FE, takes place when 𝜎𝜎�𝑒𝑒𝑒𝑒 
attains a value lower than 0.2𝑓𝑓𝑡𝑡; no switching from mixed to standard takes place in damaged 
elements.  

In Table 2 the details of the reduction in computational cost by the adaptive formulation 
refinement methodology are indicated for the 𝐷𝐷 = 80 𝑚𝑚𝑚𝑚 and eccentricity 0.625𝐷𝐷 case. 
Similar values are obtained for all the other cases of the Garcia-Alvarez beams. For each of the 
cases considered (without AMR, with 1 level of AMR and with 2 levels of AMR) the first three 
columns compare the maximum number of degrees of freedom (labelled Max. Ndofs) ensuing 
from computations with standard FE only, mixed FE only, and the proposed AFR strategy. The 
last two columns show the relation between the Max. Ndofs resulting from the use of AFR with 
respect to the corresponding values of standard FE only and mixed FE only computations.  

In 2D and 3D simulations, the ratio of unknowns between the standard and mixed FE 
formulations is 33.33%. This means that the lowest possible value that can be reached in the 
fourth column of Table 2 for the percentage of Max. Ndofs using AFR with respect the a mixed 
only calculation is 33.33%. Note that the actual values indicated in the column are very close to 
this lower bound, demonstrating the efficiency of the proposed approach. The fifth column of 
Table 2 indicates the relation between the Max. Ndofs using AFR with respect the standard only 
analysis, which is very close in all the cases to the lower possible value of 100%. The use of the 
AFR allows to decisively reduce the number of degrees of freedom, and therefore the 
computational cost, of the simulation with respect to the use of the mixed 𝜺𝜺/𝒖𝒖 formulation. In 
fact, the maximum number of degrees of freedom required with AFR is slightly larger than that 
of using the standard FE formulation. 

 Max. Ndofs 
standard FEs 

Max. Ndofs 
mixed 𝜺𝜺/𝒖𝒖 FEs 

Max. Ndofs 
AFR 

% of Ndofs 
with respect to 

mixed only 

% of Ndofs 
with respect to 
standard only 

Without 
AMR 63,226 189,678 71,222 37.55% 112.65% 

1 level of 
AMR 89,196 267,588 100,012 37.38% 112.13% 

2 levels 
of AMR 190,926 572,778 229,870 40.13% 120.40% 

Table 2. Cost-efficiency of the proposed mesh and formulation adaptivity scheme for the Garcia-Alvarez 
beams 

 

 Number of nodes with Max. number of % 
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initial uniform refinement nodes with AMR 
No mesh 

refinement 31,613 - - 

1 level of 
refinement 125,575 44,598 35.52% 

2 levels of 
refinement 500,549 95,463 19.07% 

Table 3. Cost-efficiency of the proposed mesh adaptivity scheme for the Garcia-Alvarez beams 

Table 3 further details the cost-effectiveness of the proposed mesh adaptivity scheme for the 
numerical simulation of quasi-brittle fracture. For each of the cases considered (without 
refinement, with 1 level of refinement and with 2 levels of refinement) the first column indicates 
the number of nodes that ensue from performing an initial uniform refinement of the mesh and 
the second column displays the number of nodes resulting from the adoption of the AMR 
strategy. The third column presents the relation between the two previous values. It can be seen 
how the adopted AMR scheme substantially reduces the number of nodes, and therefore the 
computational cost, of the simulation with respect to the alternative of performing an initial 
uniform refinement of the mesh. 

The calculations show that: (i) a large reduction in computational cost by the use of the adaptive 
FE formulation capabilities is achieved, (ii) results are convergent when different levels of 
adaptive mesh refinement are considered, both in terms of crack trajectories and force-
displacement curves, (iii) results agree with the experiments and do not exhibit any sign of 
spurious mesh dependency, (iv) the quasi-brittle fracture model based on the adoption of the 
mixed strain/displacement FE method is able of reproducing structural size effect with accuracy. 
 

4.1.1. Comparison with standard FE simulations 
 

In the following, results obtained using standard FEs only are compared with the ones of the 
previous section. The objective is to demonstrate that mesh refinement by itself is not able to 
yield satisfactory results; the use of mixed 𝜺𝜺/𝒖𝒖 FEs is necessary for that purpose. In this section 
the specimen with 𝐷𝐷 = 80 𝑚𝑚𝑚𝑚 and eccentricity 0.625𝐷𝐷 is considered only. The same initial 
mesh and material properties are employed. 
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Figure 15. Force-displacement curves of the Garcia-Alvarez beams, standard FEs, using different levels of 

adaptive mesh refinement. D = 80 mm specimen and eccentricity 0.625D 
 

Figure 15 shows the force-displacement curves computed with standard FEs using different 
levels of AMR. It can be observed that, despite the fact that the solutions computed with 
standard FEs are practically overlapping, they converge to a different force-displacement curve 
than mixed FEs. 

 
Figure 16. Computed crack trajectories of the Garcia-Alvarez beams, standard FEs, using different levels of 

adaptive mesh refinement. D = 80 mm specimen and eccentricity 0.625D 

In Figure 16, the crack trajectories computed with standard FEs are shown. The crack 
trajectories vary when different levels of mesh refinement are adopted, showing spurious mesh 
bias dependency and non-convergent results. Also, fractures calculated with standard FEs are 
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outside the experimental range. The large difference between the crack trajectories obtained 
with standard and mixed FEs is the reason for obtaining different solutions in terms of force-
displacement curves as well, the difference between the two calculated peak loads being of 
11%. 

Figure 17 displays the computed damage and maximum principal strain fields using standard 
FEs, comparing the results without AMR and with 1 and 2 levels of AMR. Again, it can be seen 
how the crack bandwidth diminishes as the FE size decreases. Despite the fact that the resulting 
force-displacement curves are converging to the same solution when using standard FEs, 
showing that the correct energy dissipation with respect to the FE size is enforced by the Crack 
Band Theory, the computed results are different in terms of crack trajectory, as shown in Figure 
16.  

 
 

   

    

  
Figure 17. Computed (top) damage and (bottom) maximum principal strain contours using standard FEs, 
D = 80 mm specimen, eccentricity 0.625D series, with (left) no AMR, (center) 1 level of AMR and (right) 2 

levels of AMR 
 

4.2. Arrea and Ingraffea beam  
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This section presents the numerical simulation of the Arrea and Ingraffea mixed mode bending 
test, reported in reference [54]. As reference [6] details, this experiment has been numerically 
modelled many times using several different approaches to crack modelling.  

The geometry and the boundary conditions of the beam are indicated in Figure 18a. The 
eccentricity of the applied loading with respect to the notch results in the mixed mode of the 
fracture. The beam has dimensions of 0.914 m x 0.305 m and a notch length of 82.4 mm. The 
beam thickness is 0.152 m. Two eccentric loads of values F and 0.13F act on the upper surface. 
The material properties considered are indicated in Table 4. The Drucker-Prager damage surface 
is considered for the damage constitutive law in this case. The numerical simulations are 
performed under Crack Mouth Sliding Displacement (CMSD) control.  
 

 

 
Figure 18. Arrea and Ingraffea beam: (a) Geometry (mm) and (b) detail of the mesh in the area of the notch 

 

Young’s Modulus 28.8·109 Pa 
Poisson’s Ratio 0.18 
Tensile Strength 3.7·106 Pa 

Tensile Fracture Energy 130 J/m2 
Compressive Strength 43.4·106 Pa 

(a) 

(b) 
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Table 4. Material parameters of the Arrea and Ingraffea beam 

The objective of this section is to validate the proposed methodology through comparison with 
the experimental results. To this end, the present case study examines the results of the 
numerical simulations obtained with (i) no mesh refinement, (ii) 1 level of adaptive mesh 
refinement and (iii) 2 levels of adaptive mesh refinement. AMR takes place when the equivalent 
effective stress 𝜎𝜎�𝑒𝑒𝑒𝑒 ≥ 0.5𝑓𝑓𝑡𝑡. The coarsening of the mesh is decided when 𝜎𝜎�𝑒𝑒𝑒𝑒 ≤ 0.1𝑓𝑓𝑡𝑡. In all the 
cases, the adaptive formulation refinement capabilities are introduced as well. The mixed 
formulation is activated if 𝜎𝜎�𝑒𝑒𝑒𝑒 ≥ 0.75𝑓𝑓𝑡𝑡 and the standard formulation is reestablished if 
𝜎𝜎�𝑒𝑒𝑒𝑒 ≤ 0.5𝑓𝑓𝑡𝑡.  

 
 

 
Figure 19. Computed damage contours of the Arrea and Ingraffea beam with: (a) no AMR, (b) 1 level of AMR 

and (c) 2 levels of AMR 
 

(a) 

(b) 

(c) 
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Figure 20. Detail of the computed crack trajectories for the different levels of mesh refinement of the Arrea 

and Ingraffea beam 

 

  
Figure 21. Computed Force F vs CMSD curves of the Arrea and Ingraffea beam 
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Figure 22. Evolution of the FE mesh during the simulation with 2 levels of AMR of the Arrea and Ingraffea 

beam 

 

 

  
Figure 23. Evolution of the area where standard (in blue) and mixed (in red) formulations are adopted during 

the simulation with 2 levels of AMR of the Arrea and Ingraffea beam 
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The initial mesh employed has a FE size of 2 mm. This corresponds to a mesh of 71,761 
elements. The notch is modelled with a thickness of 1 finite element, as is shown in Figure 18b. 
The initial mesh considered in the simulations is fine enough to provide satisfactory results; it is 
selected to demonstrate that convergence occurs when adaptive mesh refinement is activated.  

Figure 19 shows the computed damage contours, comparing results (i) without AMR, (ii) with 1 
level of AMR and (iii) with 2 levels of AMR. The crack, starting at the notch, gradually turns 
and modifies its trajectory due to the mixed mode loading conditions of the test. The detail of 
the crack trajectories is examined in Figure 20. On the one hand, it can be seen how the 
numerical results are practically overlapping and that convergence of the solution is properly 
taking place upon mesh refinement. On the other hand, the crack trajectories obtained with the 
adaptive FE formulation method proposed in this work matches the experimental observations. 

In Figure 21 the computed Force F vs CMSD curves with the different levels of mesh 
refinement are displayed. It can be seen again that proper convergence of the solution is taking 
place as well when considering the force-displacement response. The computations agree with 
the experimental observations both in terms of bearing capacity and of overall nonlinear 
behavior. 

Figure 22 shows the evolution of the FE mesh during the simulation as a result of the adaptive 
mesh refinement capabilities introduced in the model. In Figure 23 the evolution of the areas 
where standard and mixed FEs are active during the simulation is presented. The ability of the 
criterion based on 𝜎𝜎�𝑒𝑒𝑒𝑒 to allow the correct switching between standard and mixed formulations 
effectively is verified again. 

In Table 5 the cost-efficiency of the proposed AFR scheme is assessed. For the three cases 
considered (without AMR, with 1 level of AMR and with 2 levels of AMR), the first three 
columns provide the maximum number of degrees of freedom (Max. Ndofs) involved in the 
computations using standard FE only, mixed FE only and AFR respectively. The last two 
columns indicate the relation between the Max. Ndofs in AFR with respect to the other two 
approaches, (standard only and mixed only). The analyzes performed with AFR necessitated a 
very small increment in the number of degrees of freedom with respect to the use of standard 
FEs (~5%).  

Table 6 presents the cost-effectiveness of the AMR approach. For each of the contemplated 
cases (without refinement, with 1 level of refinement and with 2 levels of refinement) the first 
column shows the number of elements resulting from the adoption of a uniform mesh 
refinement strategy. The second column displays the number of nodes that ensue from the use 
of the AMR method proposed in this work. The third column details the ratio between the two 
previous values. It can be observed how the proposed AMR strategy allows for a very 
significant reduction in the number of elements and therefore the cost of the computational 
simulations. 

 

 Max. Ndofs 
standard FEs 

Max. Ndofs 
mixed 𝜺𝜺/𝒖𝒖 FEs 

Max. Ndofs 
AFR 

% of Ndofs 
with respect to 

mixed only 

% of Ndofs 
with respect to 
standard only 

Without 
AMR 144,910 434,730 153,050 35.21% 105.62% 

1 level of 
AMR 182,566 547,698 192,786 35.20% 105.60% 

2 levels 
of AMR 329,890 989,670 358,350 36.21% 108.63% 
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Table 5. Cost-efficiency of the proposed mesh and formulation adaptivity scheme for the Arrea and Ingraffea 
beam 

 

 Number of elements with 
initial uniform refinement 

Max. number of 
elements with AMR % 

No mesh 
refinement 71,761 - - 

1 level of 
refinement 287,044 90,724 31.61% 

2 levels of 
refinement 1,148,176 164,077 14.29% 

Table 6. Cost-efficiency of the proposed mesh adaptivity scheme for the Arrea and Ingraffea beam 
 

Computations with the mixed 𝜺𝜺/𝒖𝒖 FE approach do not present any trace of spurious mesh 
dependency. The adaptive formulation approach allows to obtain results with enhanced 
accuracy and mesh objectivity while introducing an extremely reduced increase in the 
computational cost with respect to the use of standard FEs. The efficiencies displayed by the 
AFR and AMR methods are caused by the fact that the crack propagates in a reduced area of the 
whole structure. Only a small portion of the beam reaches the nonlinear regime, as it can be 
observed in Figures 19, 22 and 23. 

4.3. Bocca beam  
 

This section analyzes the capabilities of the proposed model in reproducing the results of the 
doubly notched beam of the Bocca experiment, reported in reference [55]. Reference [55] 
includes as well the numerical simulation of the test using an automatic remeshing scheme to 
reproduce crack propagation. 

 
Figure 24. Geometry of the Bocca beam (mm) 

Young’s Modulus 27.0·109 Pa 
Poisson’s Ratio 0.18 
Tensile Strength 2.0·106 Pa 

Tensile Fracture Energy 100 J/m2 
Compressive Strength 37.3·106 Pa 

Table 7. Material properties of the Bocca beam 
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Figure 25. Detail of the initial mesh employed in the analysis of the Bocca beam in the central area 

 

 

(a) 

(b) 

(c) 
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Figure 26. Displacement contours of the Bocca beam with: (a) no AMR, (b) 1 level of AMR and (c) 2 levels of 

AMR 

This problem has been solved in references [56, 57], where particle meshless methods are 
adopted, in reference [58], where the boundary element method is used, in reference [59], which 
employed EFEM, in reference [60], where another automatic remeshing scheme is proposed and 
in reference [61], which introduced a localization limiter to regularize the problem. 

The geometry and boundary conditions of the test are detailed in Figure 24. The beam has 
dimensions 0.8 m x 0.2 m and a thickness of 0.1 m. Two notches of 40 mm length are 
introduced, and two eccentric forces of values F and 0.2F are applied as detailed in Figure 24. 
Note that the beam geometry and boundary conditions are polar symmetric. The material 
parameters are given in Table 7. The Drucker-Prager damage criterion is adopted. The 
simulation is performed under crack mouth opening displacement (CMOD) control of the upper 
notch.  

In order to assess the proposed AMR and AFR capabilities, a coarse initial mesh in considered 
for the present case study, and different levels of adaptive mesh refinement are subsequently 
introduced. The initial mesh, shown in Figure 25, has a FE size of 5 mm, which results in a total 
of 6,464 elements. This section intends to analyze the capabilities of the model when more than 
one crack develops. 

In this case study, mesh refinement takes place when the equivalent effective stress 𝜎𝜎�𝑒𝑒𝑒𝑒 ≥ 0.5𝑓𝑓𝑡𝑡 
and coarsening occurs when 𝜎𝜎�𝑒𝑒𝑒𝑒 ≤ 0.25𝑓𝑓𝑡𝑡. The mixed FE formulation is activated when         
𝜎𝜎�𝑒𝑒𝑒𝑒 ≥ 0.75𝑓𝑓𝑡𝑡 and deactivated when 𝜎𝜎�𝑒𝑒𝑒𝑒 ≤ 0.25𝑓𝑓𝑡𝑡. 

Figure 26 shows the computed displacement contours of the Bocca beam, where results (i) 
without AMR, (ii) with 1 level of AMR and (iii) with 2 levels of AMR are contrasted. The 
position of the cracks can be located due to the high gradient of displacements that they 
generated. It can be observed how the beam breaks into 3 different pieces, and that the central 
piece is exhibiting a pure rotation motion, due to the polar symmetry of the applied boundary 
conditions. Note how the displacement gradients are much more localized when a lower FE size 
is adopted, due to the adaptive mesh refinement capabilities of the model. 

In Figure 27 the computed damage contours of the Bocca beam are shown, comparing results (i) 
without AMR, (ii) with 1 level of AMR and (iii) with 2 levels of AMR. It can be seen how two 
cracks with polar symmetry are developing in the beam, as is expected from the applied 
boundary conditions. Figure 28 examines the detail of the computed crack trajectories. It can be 
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observed how the three simulations are producing practically overlapping results. Also, note 
that the computed fractures are inside the range of experimental observations. 

 
Figure 27. Damage contours of the Bocca beam with: (a) no AMR, (b) 1 level of AMR and (c) 2 levels of AMR 

 
 

(a) 

(b) 

(c) 
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Figure 28. Detail of the computed crack trajectories for the different levels of mesh refinement of the Bocca 

beam 

 

  
Figure 29. Computed force-displacement curves of the Bocca beam 
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Figure 30. Evolution of the area where standard (in blue) and mixed (in red) formulations are adopted during 

the simulation with 2 level adaptive mesh refinement of the Bocca beam 
 

 
Figure 31. Meshes at the end of the simulations of the Bocca beam with (left) 1 level of AMR and 

(right) 2 levels of AMR 

Figure 29 shows the results in terms of force F vs displacement curves at the upper right 
support. The three computations considered produce practically matching results, with a small 
overestimation of the bearing capacity in the case calculated with the coarse mesh. It can be 
observed how the simulations with 1 and 2 levels of AMR provide almost the same peak load. 
Figure 29 also details how the computed force-displacement curves agree with the experiment. 
This is remarkable, given that only one curve is provided for the original experiment in 
reference [55]. 

 Max. Ndofs 
standard FEs 

Max. Ndofs 
mixed 𝜺𝜺/𝒖𝒖 FEs 

Max. Ndofs 
AFR 

% of Ndofs 
with respect to 

mixed only 

% of Ndofs 
with respect to 
standard only 

Without 
AMR 13,378 40,134 17,230 42.93% 128.79% 

1 level of 
AMR 21,878 65,634 29,894 45.55% 136.64% 

2 levels 
of AMR 54,234 162,702 81,502 50.09% 150.28% 

Table 8. Cost-efficiency of the proposed mesh and formulation adaptivity scheme for the Bocca beam 
 

 Number of elements with 
initial uniform refinement 

Max. number of 
elements with AMR % 

No mesh 
refinement 6,464 - - 

1 level of 
refinement 25,856 10,556 40.83% 

2 levels of 
refinement 103,424 26,402 25.53% 

Table 9. Cost-efficiency of the proposed mesh adaptivity scheme for the Bocca beam 

In Figure 30 the evolution of the areas where standard and mixed FE formulations are active for 
different time-steps is shown. It can be seen how the proposed criterion defined in function of 
the equivalent effective stress is able of successfully delimiting the areas where mixed FEs 
should be activated in the considered case study where two different cracks are evolving. Figure 
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31 presents the meshes that result at the end of the simulation when the adaptive mesh 
refinement capabilities are introduced. It can be seen how the proposed model is also able to 
properly define the regions that required mesh refinement and later coarsening. 

 CPU-times (s) 
 Standard FEs AFR Mixed FEs 
Without AMR 757.09 1,193.07 5,248.93 

1 level of AMR 4,091.41 4,390.56 18,556.28 
2 levels of AMR 12,490.85 25,394.72 76,053.59 

Table 10. CPU-times of the computations with standard FEs, mixed FEs and the proposed AFR scheme for the 
Bocca beam 

In Table 8 the cost-efficiency of the proposed methodology is assessed. As in the previous 
cases, for each of the situations considered (without AMR, with 1 level of AMR and with 2 
levels of AMR) the maximum number of degrees of freedom is indicated for analyzes 
performed with standard FE, mixed FE and AFR. The relation between the maximum number 
of degrees of freedom in AFR and the other two methods (standard only and mixed only) is also 
given. In the present analysis, where an initial coarse mesh is considered, it can be observed 
how the reduction in computational cost provided by AFR is not as important as in the previous 
sections where an initially fine mesh is adopted. Notwithstanding, the use of the AFR approach 
remains highly advantageous also in this instance. 

Table 9 shows the cost-effectiveness of AMR in the Bocca beam analysis. For the three cases 
considered (without refinement, with 1 level of refinement and with 2 levels of refinement) the 
strategies of uniform refinement (first column) and adaptive refinement (second column) are 
compared in terms of the number of elements that ensue in the computation. In the third column 
the ratio between the two values is indicated. It can be observed how the AMR capabilities of 
the model provide a noteworthy reduction in computational cost. 

To further show the increased efficiency ensuing from the adoption of the proposed AFR 
scheme, Table 10 compares the resulting CPU-times with corresponding simulations using 
standard and mixed FEs only. Again, each of the considered cases (without AMR, with 1 level 
of AMR and with 2 levels of AMR) are considered. Computations were carried out in a single 
thread on an Intel Core i7-6700 CPU. It can be observed that the CPU-times ensuing from the 
application of the AFR strategy are much lower the ones corresponding to the use of mixed FEs. 
The order of magnitude of the computational cost of AFR is comparable to the one resulting 
from the use of standard FEs. This shows that the AFR approach highly reduces the cost of the 
simulations performed with mixed FEs, while preserving the quality of the results.  
 

4.4. Crack branching numerical test 
 

In this section, the numerical simulation of a crack branching test is performed. In this 
benchmark, initially proposed in reference [62], a square plate with an initial notch at the 
midheight is considered in order to examine the ability of the numerical approach in 
reproducing bifurcations.  

The geometry and boundary conditions of the problem are indicated in Figure 32a. The plate 
has dimensions of 2 mm x 2 mm. The thickness of the notch is taken as zero. The right edge of 
the plate is fixed and on the top and bottom boundaries are imposed vertical displacements 
following the function 𝑓𝑓(𝑥𝑥) = 𝑢𝑢𝑣𝑣(𝑥𝑥 − 1)2 4⁄ , 𝑢𝑢𝑣𝑣 being the displacement at the top-left and 
bottom-left corners and the origin 𝑥𝑥 = 0 being placed at the center of the specimen so that 
−1 ≤ 𝑥𝑥 ≤ 1. These imposed boundary conditions enforce the branching of the propagating 
crack in the plate. The material properties of the test are included in Table 11, used together 
with the Rankine damage surface.  
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The numerical simulation is performed with both AFR and AMR capabilities. In this case, 3 
levels of mesh refinement are introduced. AMR is triggered when the equivalent effective stress 
𝜎𝜎�𝑒𝑒𝑒𝑒 reaches 75% of the tensile strength 𝑓𝑓𝑡𝑡. Coarsening is enabled when 𝜎𝜎�𝑒𝑒𝑒𝑒 drops below 50% of 
𝑓𝑓𝑡𝑡. The same thresholds are established for AFR. 

 
Figure 32. Crack branching numerical test: (a) Geometry (mm) and (b) detail of the mesh in the area of the 

notch 
 

Young’s Modulus 20.0·109 Pa 
Poisson’s Ratio 0.3 
Tensile Strength 44.0·106 Pa 

Tensile Fracture Energy 89 J/m2 
Table 11. Material properties of the crack branching numerical test 

   
Figure 33. Computed damage contours at different stages of the simulation of the crack branching numerical 

test 

The detail of the initial mesh adopted to perform the simulation in the area of the notch is shown 
in Figure 32b. It is a structured mesh of 40 x 40 = 1600 quadrilateral elements. Note that this 
original mesh is not fine enough to produce an acceptable result of the numerical simulation if 
AMR is not introduced. It has been chosen to illustrate the capabilities of the proposed 
numerical scheme when a coarse mesh is initially considered. 

 

(a) (b) 
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Figure 34. Crack branching numerical test: Evolution of the area where standard (in blue) and mixed (in red) 

formulations are adopted 

 

   
Figure 35. Crack branching numerical test: Evolution of the refined area 

 

Max. Ndofs 
mixed 𝜺𝜺/𝒖𝒖 FEs 

Max. Ndofs 
AFR 

% of Ndofs with 
respect to mixed only 

87,132 66,332 76.13% 
Table 12. Cost-efficiency of the proposed formulation adaptivity scheme for the crack branching numerical 

test 

 

Number of nodes with 
initial uniform refinement 

Max. number of nodes with 
adaptive mesh refinement % 

103,057 14,522 14.09 
Table 13. Cost-efficiency of the proposed mesh adaptivity scheme for the crack branching numerical test 

In Figure 33 the computed damage contours at different stages of the simulation can be 
observed. It can be seen how first the crack progresses horizontally and then branches due to the 
boundary conditions imposed in the body. Two symmetric cracks evolve in the plate until 
branching occurs again. Then, four symmetric cracks propagate through the plate. Figure 34 
shows the evolution of the area where the mixed FE formulation is activated during the 
simulation. It can be seen how mixed FEs are introduced in the simulation only in the areas 
where the cracks propagate. Also, in Figure 35 the regions where the mesh is refined can be 
observed for the same time steps. This shows that the proposed criterion based on the equivalent 
effective stress is satisfactorily defining the areas to be refined in crack branching situations as 
well. 
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Table 12 assesses the savings in computational cost due to the proposed AFR scheme. The first 
column indicates the maximum number of degrees of freedom (labelled Max. Ndofs) ensuing 
from computations with mixed FE only while the second column shows the corresponding value 
for the AFR strategy. The last column presents the relation between the two previous values. In 
the present case where an initial coarse mesh is adopted, the decrease in the number of degrees 
of freedom is due to the AFR scheme is not as important as in the previous case study where an 
initially fine mesh was employed. Still, the FE formulation adaptivity allows to introduce a 
significant reduction in computational cost. 

Table 13 examines the cost-efficiency of the adopted AMR strategy. In the first column the 
number of nodes resulting from the use of an initial uniform refinement approach is provided 
while in the second column the number of nodes introduced by the ARM method is indicated. 
The third column shows the relation between the two previous values. It can be inferred that in 
this case where an initial coarse mesh is adopted to calculate the problem, AMR produces a 
large saving in the computational cost with respect to the use of initial mesh refinement.  

In the present case study, the adaptive mesh refinement strategy produces a large part of the 
total cost savings of the method. No sign of spurious mesh bias dependence can be observed. 
The combination of the AMR and AFR capabilities of the proposed model allows to obtain 
mesh objective results at a reasonable computational cost. 
 

 Conclusions 5.
 

In this work, the use of an Adaptive Formulation Refinement (AFR) strategy is combined with 
the application of an Adaptive Mesh Refinement (AMR) approach for the cost-efficient 
computation of localized structural failure with enhanced accuracy and mesh objectivity. 

The proposed AFR strategy allows to adaptively switch between the standard displacement-
based FE formulation and the more accurate mixed strain/displacement FE. An isotropic 
damage model is used to model the stiffness degradation leading to cracking and structural 
failure. A simple and effective criterion defined in terms of the ratio between the equivalent 
effective stresses that develop in the structure and the material strength is introduced to 
selectively activate the formulations. The proposed methodology has shown to significantly 
reduce the computational cost of the simulations, rendering them of the order of standard FE 
calculations, while benefitting from the enhanced accuracy and mesh bias objectivity of the 
mixed FE. 

Using a similar refinement criterion based on the same ratio between the equivalent effective 
stresses and the material strength, the adopted AMR strategy further reduces the required 
computational cost of structural analyses, by allowing to start the simulation with a coarse mesh 
and adaptively refining only the areas where crack propagation occurs, which represent a small 
part of the whole domain.  

The proposed model also allows for the later adaptive mesh coarsening and formulation 
derefinement, switching back from mixed to standard FEs, according to the corresponding 
criteria. The combination of the AFR and AMR methodologies is fairly straightforward. 

The paper includes the assessment of the proposed methodology through the simulation of 
several numerical benchmarks and experimental tests available in the literature. The successful 
computation of situations involving structural size effect, multiple developing cracks and crack 
branching is presented. The simulations reproduce the bearing capacity, force-displacement 
curves, crack trajectories and collapse mechanism observed in the experiments with enhanced 
accuracy.  
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Complementarily, the comparison of the proposed model with the standard displacement-based 
formulation is also performed. This shows, on the one hand, the capacity of the adopted 
methodology combining AFR and AMR to produce converging mesh objective results, without 
any trace of spurious mesh dependence. On the other hand, the standard formulation alone 
remains spuriously mesh dependent and unreliable, even if the mesh is refined. 

Calculations show the capacity of the approach integrating AFR and AMR to obtain reliable 
results with high accuracy and with a computational cost of the order of the standard 
displacement-based FE. This demonstrates the effectiveness of the approach in engineering 
practice. 
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