A localized mapped damage model for orthotropic materials

Luca Pelà *, Miguel Cervera, Sergio Oller, Michele Chiumenti

CIMNE, International Center for Numerical Method in Engineering, Technical University of Catalonia (UPC), Campus Norte, Jordi Girona 1-3, 08034 Barcelona, Spain

ARTICLE INFO

Article history:
Received 16 September 2013
Received in revised form 16 March 2014
Accepted 25 April 2014
Available online 8 May 2014

Keywords:
Continuum Damage Mechanics
Orthotropy
Transformation tensor
Fracture
Crack-tracking
Masonry

ABSTRACT

This paper presents an implicit orthotropic model based on the Continuum Damage Mechanics isotropic models. A mapping relationship is established between the behaviour of the anisotropic material and that of an isotropic one. The proposed model is used to simulate the failure loci of common orthotropic materials, such as masonry, fibre-reinforced composites and wood. The damage model is combined with a crack-tracking technique to reproduce the propagation of localized cracks in the discrete FE problem. The proposed numerical model is used to simulate the mixed mode fracture in masonry members with different orientations of the brick layers.

1. Introduction

The mechanical behaviour of anisotropic materials involves properties that vary from point to point, due to composite or heterogeneous nature, type and arrangement of constituents, presence of different phases or material defects. A macroscopic continuum model aimed at the phenomenological description of anisotropic materials should account for (i) the elastic anisotropy, (ii) the strength anisotropy (or yield anisotropy, in case of ductile materials) and (iii) the brittleness (or softening) anisotropy [1].

Several materials can be considered, with an acceptable degree of approximation, to be orthotropic, even though some of them are not so in the whole range of behaviour. Modelling the elastic orthotropy does not present big difficulties, since it is possible to use the general elasticity theory [2]. On the other hand, the need to model the strength and nonlinear orthotropic behaviour requires the formulation of adequate constitutive laws, which can be based on such theories as plasticity or damage. In particular, although several failure functions have been proposed, the choice of a suitable orthotropic criterion still remains a complex task.

One of the more popular attempts to formulate orthotropic yield functions for metals in the field of plasticity theory is due to Hill [3,4], who succeeded in extending the von Mises [5] isotropic model to the orthotropic case. The main limitation of this theory is the impossibility of modelling materials that present a behaviour which not only depends on the second invariant of the stress tensor, i.e. the case of geomaterials or composite materials. On the other hand, Hoffman [6] and Tsai–Wu [7] orthotropic yield criteria are useful tools for the failure prediction of composite materials.

* Corresponding author. Address: Universitat Politècnica de Catalunya – BarcelonaTech, Department of Construction Engineering, C/Jordi Girona, 1-3 (Module C1 – Office 206-B), 08034 Barcelona, Spain. Tel.: +34 93 401 10 36; fax: +34 93 405 41 35.
E-mail addresses: luca.pela@upc.edu (L. Pelà), miguel.cervera@upc.edu (M. Cervera), sergio.oller@upc.edu (S. Oller), michele@cimne.upc.edu (M. Chiumenti).
http://dx.doi.org/10.1016/j.engfracmech.2014.04.027
0013-7944/© 2014 Elsevier Ltd. All rights reserved.
For the description of incompressible plastic anisotropy, not only yield functions [8] and phenomenological plastic potentials [9] have been proposed over the years. Other formulation strategies have been developed, related to general transformations based on theory of tensor representation [10,11]. A particular case of this general theory, which is based on linearly transformed stress components, has received more attention. This special case is of practical importance because convex formulations can be easily developed and, thus, stability in numerical simulations is ensured. Linear transformations on the stress tensor were first introduced by Sobotka [12] and Boehler and Sawczuck [13]. For plane stress and orthotropic material symmetry, Barlat and Lian [14] combined the principal values of these transformed stress tensors with an isotropic yield function. Barlat et al. [15] applied this method to a full stress state and Karafillis and Boyce [16] generalized it as the so-called isotropic plasticity equivalent theory with a more general yield function and a linear transformation that can accommodate other material symmetries. Betten [17,18] introduced the concept of mapped stress tensor to express the behaviour of an anisotropic material by means of an equivalent isotropic solid (mapped isotropic problem). The same approach was later refined by Oller et al. [19–23] with the definition of transformation tensors to relate the stress and strain tensors of the orthotropic space to those of a mapped space, in which the isotropic criterion is defined. The stress and strain transformation tensors are symmetric and rank-four and establish a one-to-one mapping of the stress/strain components defined in one

<table>
<thead>
<tr>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>( A^{\sigma} )</td>
</tr>
<tr>
<td>( A^{e} )</td>
</tr>
<tr>
<td>( C )</td>
</tr>
<tr>
<td>( d )</td>
</tr>
<tr>
<td>( D )</td>
</tr>
<tr>
<td>( E_i )</td>
</tr>
<tr>
<td>( f_{ii} )</td>
</tr>
<tr>
<td>( f_{ij} )</td>
</tr>
<tr>
<td>( F_{12} )</td>
</tr>
<tr>
<td>( G_{ij} )</td>
</tr>
<tr>
<td>( G_{ij} )</td>
</tr>
<tr>
<td>( k_f )</td>
</tr>
<tr>
<td>( K )</td>
</tr>
<tr>
<td>( n )</td>
</tr>
<tr>
<td>( r )</td>
</tr>
<tr>
<td>( r_{ij} )</td>
</tr>
<tr>
<td>( x_i )</td>
</tr>
<tr>
<td>( \varepsilon )</td>
</tr>
<tr>
<td>( \theta )</td>
</tr>
<tr>
<td>( \Lambda )</td>
</tr>
<tr>
<td>( \nu_{ij} )</td>
</tr>
<tr>
<td>( \sigma_i )</td>
</tr>
<tr>
<td>( \sigma )</td>
</tr>
<tr>
<td>( \tau )</td>
</tr>
<tr>
<td>( \phi )</td>
</tr>
<tr>
<td>( \psi )</td>
</tr>
<tr>
<td>( \psi_0 )</td>
</tr>
<tr>
<td>( : )</td>
</tr>
<tr>
<td>( \cdot )</td>
</tr>
<tr>
<td>( \cdot )</td>
</tr>
<tr>
<td>( { } )</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronyms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDM</td>
</tr>
<tr>
<td>CMOD</td>
</tr>
<tr>
<td>E-FEM</td>
</tr>
<tr>
<td>FE</td>
</tr>
<tr>
<td>FEM</td>
</tr>
<tr>
<td>FRP</td>
</tr>
<tr>
<td>SCA</td>
</tr>
<tr>
<td>X-FEM</td>
</tr>
<tr>
<td>2D</td>
</tr>
</tbody>
</table>
space into the other and vice versa (Fig. 1). The constitutive law and the damage criterion are explicitly expressed only in the isotropic mapped space. In this way, it is possible to use standard isotropic models in calculations, with all the related computational benefits, while the information concerning the real orthotropic properties of the material is included in the transformation tensor. The parameters that define the transformation tensor can be calibrated from adequate experimental tests. The implementation of this theory into the framework of the standard FE codes is straightforward.

The aforementioned approach based on mapped tensors was principally addressed to Plasticity problems. Recently it has been extended to Continuum Damage Mechanics (CDM) constitutive laws by Pelà et al. [24,25] and applied to the study of masonry structures.

This paper explores the application of the model also to generic orthotropic materials. The underlying theory applied to CDM is recovered and its theoretical consistency and flexibility to different applications are stressed. The proposed mapped damage model is then used to simulate the failure loci of masonry, fibre-reinforced composites and wood. The main novelty of this research is the combination of the mapped damage model with the local crack-tracking technique proposed by Cervera et al. [26]. The purpose of this improvement of the original approach is the FE analysis of tensile cracking phenomena in orthotropic materials. The combination of the mapped tensor theory with a crack-tracking algorithm poses some issues that are addressed in this paper.

The introduction of local or global crack-tracking techniques into the framework of standard finite elements and constitutive models [25–28] has revealed to be a satisfactory solution to some of the major drawbacks of the classical Smeared Crack Approach (SCA) [29]. In addition to modelling the tensile damage as a smeared quantity spreading over large regions of the FE mesh, the SCA presents other well-known disadvantages. Firstly, the smeared damage propagation depends on mesh-size and mesh-bias, with a consequent lack of objectivity in the numerical results when different spatial discretizations are considered. Secondly, crack locking can be observed especially in bending problems, when the advancing flexural crack experiences a sudden “about-turn”. The effectiveness of crack-tracking techniques to avoid mesh dependency and locking problems has been demonstrated in Refs. [25–28].

The crack-tracking procedure labels the finite elements which can damage and prevents the others from failing. A correction of spurious changes of crack propagation direction is carried out. These features of the method allow the analyst to avoid the aforementioned problems usually found in classical SCA, without increasing excessively the implementation effort or the computational cost. Crack-tracking algorithms are also employed in E-FEM and X-FEM to establish which elements lie in the discontinuity path and need to be enriched [30]. Despite the wide diffusion of the aforementioned procedures, it is worth noting that the introduction of mixed approaches in the field of Computational Failure Mechanics does not require any crack-tracking method [31–33].

![Fig. 1. Relationship between the mapped isotropic and the real anisotropic spaces [24].](image-url)
Benchmark numerical examples are presented to check the capability of the numerical model to reproduce the correct crack paths in a material with different inclinations of the axes of orthotropy. The FE simulation of mixed mode fracture experimental tests on brick masonry members is discussed. The model is able to predict the failure load and the cracking path in orthotropic materials subject to complex stress states.

The material is modelled by considering a macro-scale approach and it is represented as a homogeneous continuum. No distinction is made among components if a composite material, e.g. FRP or masonry, is analysed. An alternative treatment is the use of any theory of homogenization [34,35].

1.1. Notation

Tensor notation is used in this paper. The material coordinate system, which coincides with the principal axes of orthotropy of the solid, is denoted by axes 1 and 2 in the two-dimensional case, see Fig. 2. Tensors and vectors referred to that local coordinate system are marked by apex ('). The angle $\theta$ indicates the inclination between the material and the global coordinate systems (xy) and it is measured counter clockwise from the x-axis to the 1-axis. Finally, apex ('/) is assigned to variables related to the mapped isotropic space.

2. Mapped damage model

The orthotropic mapping of CDM constitutive laws has been presented in Refs. [1,24,25]. In this section, the basics of the method are recovered and its thermodynamic consistency is demonstrated. The flexibility of the procedure for the application to generic orthotropic materials is stressed.

2.1. Definition of the space transformation tensors

The method is based on assuming that the real anisotropic space of stresses $\sigma$ and the conjugate space of strains $\varepsilon$ have their respective image in two mapped isotropic spaces of stresses $\sigma^*$ and strains $\varepsilon^*$, respectively (Fig. 1). The relationship between these spaces is defined by

$$\sigma^* = A^\sigma : \sigma \quad \text{or} \quad \sigma^*_{ij} = A^\sigma_{ijkl} \sigma_{kl}$$

(1)

$$\varepsilon^* = A^\varepsilon : \varepsilon \quad \text{or} \quad \varepsilon^*_{ij} = A^\varepsilon_{ijkl} \varepsilon_{kl}$$

(2)

where $A^\sigma$ and $A^\varepsilon$ are the transformation tensors, for stresses and strains, respectively, relating the mapped and real spaces. These rank four-tensors embody directly the elastic and strength anisotropy of the material. Since the symmetry of the Cauchy stress tensor both in the anisotropic and isotropic spaces is required, it follows that $A^\sigma_{ijkl} = A^\sigma_{jikl} = A^\sigma_{jilk}$. The symmetry of the four-rank transformation tensor is also necessary, hence $A^\varepsilon_{ijkl} = A^\varepsilon_{ijlk}$ [23].

The assumption of a strain space transformation tensor [21–23], in addition to the definition of the stress space transformation tensor, allows for no-proportionality between the strength and the elastic modulus for each material direction. For this reason, the adopted methodology has been also termed “isotropic mapped model for non-proportional materials” [21]. This feature of the method avoids the basic assumption of elastic strains uniqueness for both the real and mapped spaces made in previous works [19,20], in which the sole stress transformation tensor was used. In fact, such situation would introduce a limitation in the anisotropic mapped theory, because it would result that $f_{11}/E_1 = f_{22}/E_2 = f_{12}/G_{12}$ ($f_i$ and $E_i$ are

Fig. 2. Orthotropic material with material axes of orthotropy 1 and 2.
the uniaxial strengths and the Young’s moduli referred to \( i \)-axes, whereas \( f \) and \( G \) are the pure shear strength and the shear modulus). In the present work, the generalization of such basic theory is introduced, by providing the tensor transformations of both real stresses and strains, i.e. independent mappings of stress and strain spaces.

In this work, the material is assumed to be initially orthotropic and under in-plane stress conditions. There are different alternatives to define the tensor \( \mathbf{A}^\sigma \) for this case, see for instance Betten [17], Oller et al. [21,22] and Car et al. [36,37]. In this context, the stress space transformation tensor in the material coordinate system (axes 1 and 2, see Fig. 2) is:

\[
\begin{align*}
A_{1111}^\sigma &= f_{11}/f_{11} \\
A_{1122}^\sigma &= f_{22}/f_{22} \\
A_{1212}^\sigma &= A_{2121}^\sigma = f_{12}/(2f_{12}) \\
A_{2112}^\sigma &= A_{2211}^\sigma = f_{12}/(2f_{12}) \\
A_{1112}^\sigma &= A_{1121}^\sigma = 0 \\
A_{2211}^\sigma &= A_{2212}^\sigma = 0 \\
A_{1212}^\sigma &= A_{2122}^\sigma = A_{2112}^\sigma = 0 \\
A_{1211}^\sigma &= A_{1222}^\sigma = A_{2111}^\sigma = A_{2222}^\sigma = 0
\end{align*}
\]  

(3)

The orthotropic strengths \( f \) can be obtained from adequate experimental tests, namely uniaxial tests along directions 1 and 2 and the pure shear test. Assuming an isotropic criterion in the isotropic space, it is \( f_{11} = f_{22} = f \). The choice of \( f \) is arbitrary. The expression of \( f_{12} \) depends on the particular isotropic criterion adopted. It is important to note that the procedure may be extended to the 3-dimensional case, at the cost of providing the necessary additional strength parameters.

The stress tensor transformation is sufficient for mapping an explicit isotropic criterion to a scaled implicit orthotropic criterion. In fact, carrying out the transformation of stresses is equivalent to mapping the isotropic criterion desired. Any known isotropic criterion can be mapped, such as Tresca, von Mises, Mohr–Coulomb, Drucker–Prager, as well as experimental set of data obtained from laboratory tests. Highly anisotropic surfaces can be represented appropriately by the stress space mapping, such as in the case of fibre-reinforced composites [36,37]. The transformation leads to changes in the shape of the failure surface, as shown for instance in Fig. 1 for the case of von Mises criterion [24].

Although with definitions (3) it is possible to find adequate orthotropic criteria, it could be difficult to adjust them “exactly” to represent the desired material behaviour. In order to circumvent this limitation, a more refined form of the stress transformation tensor was proposed by Oller et al. [23], making use of a “shape adjustment tensor”, whose purpose is to adjust correctly the isotropic criterion to the desired orthotropic one. The shape adjustment tensor must be derived from a wasteful iterative procedure, since \( A^\sigma \) depends on the stress state at each instant of the mechanical process. Although the results obtained by Oller et al. are very accurate, the standard form of the stress transformation tensor will be considered in the present study.

The stress space transformation tensor in the global coordinate system \( x_i \) is readily obtainable from the definitions (3) of the tensor components in the local principal axes \( x'_i \) of the orthotropic material. If \( r_{ij} \) represents \( \cos(x'_i,x'_j) \), it results that

\[
A_{ijkl}^\sigma = r_ip^{ij}r_{kl}^{rs}A_{pr}^{\sigma
in}
\]  

(4)

The tensor \( A^\sigma \) must be non-singular, in order to ensure the reversibility of the stress transformation from one space to the other. For this aim, the strength values cannot be equal to zero either in the mapped or in the real space, see Equations (3).

Moreover, assuming that \( f \) have the same sign of \( f_{ij} \), the components of \( A^\sigma \) are all positive and, therefore, tensor \( A^\sigma \) results always positive-definite, in view of (4).

The strain space transformation tensor \( A^e \) defined in (2) can be derived from (1) and the constitutive equation:

\[
A_{ijkl}^e = (C^{-1})_{ijkl}A_{ijkl}^\sigma C_{klmn}
\]  

(5)

where \( C \) and \( C^* \) are the constitutive tensors in the real and isotropic space, respectively.

It is worth noting that the isotropic solid properties, i.e. \( f \) and elastic constants in tensor \( C^* \), can be selected arbitrarily, since they disappear at the end of the mapping procedure to the isotropic space and back to the real one.

In this work, the components of both the stress or strain transformation tensors keep constant whether the material is in the linear or nonlinear range. Such basic assumption allows the model to reproduce effectively both the elastic and the strength orthotropy. The way the model can represent the brittleness (softening) orthotropy will be explained in Section 2.3.

2.2. Underlying damage model

The isotropic CDM constitutive model considered in the mapped space considers one scalar internal variable to monitor the local damage [38–41]. This simple constitutive model is able to reproduce the overall nonlinear behaviour including stiffness degradation and strain-hardening/softening response. It is defined as

\[
\sigma^* = (1 - d)\sigma^\sigma = (1 - d)C^*:\epsilon^e
\]

(6)

where \( d \) is the damage index, \( \sigma^\sigma \) is the effective stress tensor defined under the hypothesis of strain equivalence [42] and \( C^* \) is a (fourth-order) isotropic linear-elastic constitutive tensor.
One of the basic ingredients of the underlying damage model is the isotropic criterion, defined as follows

$$\Phi'(\tau^*, r^*) = \tau^* - r^* \leq 0$$

(7)

The variable $r^*$ is an internal stress-like variable representing the current damage threshold, as its value controls the size of the (monotonically) expanding damage surface. Its initial value is $r_0 = r_0(f^*)$. The equivalent stress $\tau^*$ is a positive scalar defined in order to identify "loading", "unloading" or "reloading" situations for a general 3D stress state. It can be expressed in several forms, depending on the damage threshold criterion considered, as a function of the effective stress tensor:

$$\tau^* = \tau^*(\bar{\sigma}^*)$$

(8)

The expressions of the equivalent stress $\tau^*$ for the damage criteria considered in the paper are presented in Appendix A. The constitutive equation for the real orthotropic material is obtained by writing the dissipation occurring in an isothermal elasto-damageable process in the real anisotropic space. The dissipation expression is obtained taking into account the first and second principles of thermodynamics. We define a free potential energy of the following form

$$\psi(\varepsilon, r) = [1 - d(r)]\psi_0 = [1 - d(r)]\left[\frac{1}{2} \varepsilon : C : \varepsilon \right] \geq 0$$

(9)

where $\psi_0$ is the elastic free energy potential. All the variables in (9) are amenable to the classical thermodynamic representation [43], i.e. the free variable $\varepsilon$, the internal variable $r$ and the dependent variable $d(r)$.

The second principle of thermodynamics requires the mechanical dissipation to be non-negative. Hence, according to the Clausius–Duhem inequality, the dissipation takes the form:

$$D = -\psi + \sigma : \dot{\varepsilon} = \left( -\frac{\partial \psi}{\partial E} + \sigma \right) : \dot{\varepsilon} + \psi_0 \dot{d} \geq 0$$

(10)

Applying the Coleman’s method [44] to guarantee the condition of positive dissipation in (10), the constitutive equation for the anisotropic material is obtained finally as

$$\sigma = \frac{\partial \psi}{\partial E} = [1 - d(r)]C : \varepsilon$$

(11)

The expression (9) of the free energy potential can be rewritten by taking into account the relationship between the constitutive tensors in the real and mapped spaces. This gives

$$\psi(\varepsilon, r) = \frac{1}{2} [1 - d(r)]\varepsilon : [(A^\varepsilon)^{-1} \cdot C \cdot A^\varepsilon] : \varepsilon$$

(12)

The constitutive equation in the real anisotropic space, defined in terms of stress field in the mapped isotropic space, is obtained by substituting (12) into (11), i.e.,

$$\sigma = \frac{\partial \psi}{\partial E} = [1 - d(r)][(A^\varepsilon)^{-1} \cdot C \cdot A^\varepsilon] : \varepsilon = [1 - d(r)][(A^\varepsilon)^{-1} \cdot C] : \varepsilon^* = [1 - d(r)](A^\varepsilon)^{-1} : \sigma^*$$

(13)

Eq. (13) confirms the assumption of space transformations made in (1) and (2).

Finally, it is important to notice that (10) and (11) lead to

$$D = \psi_0 \dot{d} \geq 0$$

(14)

i.e. the scalar damage variable increases monotonically.

2.3. Evolution of the damage variable and inelastic behaviour

The damage index $d = d(r^*)$ is explicitly defined in terms of the corresponding current value of the damage threshold, so that it is a monotonically increasing function such that $0 \leq d(r^*) \leq 1$. The evolution of the damage index is given by the following exponential softening law [26]:

$$d(r^*) = 1 - \frac{r_0}{r^*} \exp \left\{ 2H_{dis} \left( \frac{r_0 - r^*}{r_0} \right) \right\}$$

(15)

where constant $H_{dis} > 0$ is the discrete softening parameter:

$$H_{dis} = \frac{l_{dis}}{l_{mat} - l_{dis}}$$

(16)

The term $l_{mat} = \left( 2E'G'' / (f')^2 \right)$ is the material characteristic length which measures the brittleness of the material. Such parameter depends only on the material properties in the mapped isotropic space, i.e. the uniaxial strength $f'$, the Young’s modulus $E'$ and the mode I fracture energy per unit area $G'$.
computational width of the fracture zone in the discrete FE problem, which depends on the finite element size [45]. It has been introduced to ensure mesh-size objective results [46]. Therefore, the specific dissipated energy \( D^* \) is scaled for each element so that the equation

\[
D^* l_{\text{dis}} = G_f
\]

holds. This makes the softening parameter \( H_{\text{dis}} \), which defines the softening response in the FE discrete problem, dependent on the element size. For further details on the derivation of equation (16), the reader is referred to [41].

It is important to note that in (6), (15), and (16) there are terms without the apex (\(^\ast\)) assigned to variables related to the mapped isotropic space. In fact, the variables \( d, l_{\text{mat}}, \) and \( H_{\text{dis}} \) can be considered equal in both the spaces to model isotropic softening behaviour of the real material. In that case, it results that

\[
\frac{2E^* G_f}{(f^*)^2} = \frac{2E_1 G_{f,1}}{(f_{11})^2} = \frac{2E_2 G_{f,2}}{(f_{22})^2} \Rightarrow l_{\text{mat}} = l_{\text{mat},1} = l_{\text{mat},2}
\]

This assumption leads to the same softening parameters in both the mapped and real spaces. As discussed before, the choices of \( f^*, E, G_f \) are arbitrary. Choosing \( f^* = f_{11}, E = E_1, G_f = G_{f,1} \), consequently \( (A^*)_{11} = 1 \) and scaling of the isotropic damage threshold surface is only performed along the 2-axis. In case of isotropic softening, a restriction on the relationship between fracture energies can be obtained from (18):

\[
G_{f,2} = \frac{(f_{22}/f_{11})^2}{E_2/E_1} G_{f,1}
\]

The proposed model can also include the description of the orthotropic softening, in the sense that the material properties involved in the definition of the expression \( d = d(r^*) \) are directionally dependent. More generally, the damage evolution law \( d = d(r^*, r^*; \theta) \) is such that \( d(r^*, \theta) \) depends on the physical directions. As \( r^* \) is assumed to behave isotropically and changing such assumption would spoil most of the advantages of the approach, an obvious alternative is to modify \( d(r^*, \theta) \) directionally [24]. This procedure is carried out by using an appropriate directional interpolation between the known values for lengths \( l_{\text{mat},1} \) and \( l_{\text{mat},2} \). In the work, the following expression is adopted for \( l_{\text{mat}} \) to model orthotropic softening:

\[
\frac{1}{(l_{\text{mat}})^2} = \frac{\cos^2(\theta - \theta_0)}{(l_{\text{mat},1})^2} + \frac{\sin^2(\theta - \theta_0)}{(l_{\text{mat},2})^2}
\]

in which \( \theta \) is the angle of orthotropy and \( \theta_0 \) is the angle denoting the direction of the main stress characterized by the maximum absolute value. Both angles are measured counter clockwise from the global x-axis to the material 1-axis. Eq. (20) corresponds to an elliptic interpolation of lengths \( l_{\text{mat},1} \) and \( l_{\text{mat},2} \) and reproduces isotropic softening in case of \( l_{\text{mat},1} = l_{\text{mat},2} \) (18). In this way, two different elemental softening parameters can be specified along the material axes, by defining an opportune specific softening parameter \( H_{\text{dis}} \). In practice, it suffices to choose the following properties in the mapped isotropic space:

\[
\begin{align*}
& f^* = f_{11} \\
& E^* = E_1 \\
& G_f^* = \frac{(f^*)^2}{2E^*} l_{\text{mat}}
\end{align*}
\]

(21a, b, c)

The presented procedure permits to account for totally different fracture energies along the material axes, providing a full orthotropic softening behaviour.

The capability of the mapped damage model to represent the orthotropic behaviour is demonstrated by considering the following uniaxial tension example. The material properties, referred to the material axes 1 and 2, are the following: Young’s moduli \( E_1 = 3000 \) MPa and \( E_2 = 2000 \) MPa, Poisson’s ratios \( \nu_{12} = 0.1 \) and \( \nu_{21} = 0.15 \), shear modulus \( G_{12} = 900 \) MPa, strength values \( f_{11} = 0.35 \) MPa, \( f_{22} = 0.15 \) MPa, and \( f_{12} = 0.2 \) MPa. In fracture energies \( G_{f,1} = 100 \) J/m² and \( G_{f,2} = 27.6 \) J/m². The values chosen illustrate the fact that different behaviours along the two material axes can be reproduced. The parameters of the 1-direction are selected for the mapped isotropic space.

The case of isotropic softening is considered firstly. Fig. 3a shows the uniaxial tensile stress–strain responses in the x-global direction for angles of orthotropy equal to 0°, 45° and 90°. As can be seen, the model is able to capture the stiffness, the strength and the inelastic dissipation in each direction. According to the considered exponential softening law, once the fracture energy is exhausted, a no-tension material is recovered. The material strength in the y-direction degrades at the same rate of the material strength in the x-direction, since material brittleness is the same in all directions, according to (18) and (19).

Fig. 3b shows the capability of the model to represent the softening orthotropy under uniaxial tension along x- and y-global directions. The properties in the real space, referred to the material axes 1 and 2, are the same considered before. In addition to the value of fracture energy in the y-direction \( G_{f,2} = 27.6 \) J/m², which has been obtained by (19) and corresponds to isotropic softening, other values are considered according to (20) and (21): 13.8 J/m², 41.4 J/m², 138 J/m² and +∞. The assumption of these four values leads to two different softening parameters along the material axes x and y. In the first case, the material strength in the y-direction degrades at a faster rate than the material strength in the x-direction.
In the other cases, the opposite occurs. The last case represents a hypothetic orthotropic material with a post-peak perfectly plastic behaviour in y-direction. Therefore, the proposed model can represent completely different inelastic behaviours along the two material axes.

As shown in this example, the model is suitable for problems involving monotonic loading. The behaviour of the model during loading and unloading is defined according to Continuum Damage Mechanics Theory, i.e. unloading occurs until the initial undeformed state according to a damaged stiffness.

The unilateral effect, in the sense of recovering totally or partially the initial stiffness upon crack closure [47,48], cannot be addressed by the proposed model, since the adoption of one isotropic damage variable cannot represent distinct behaviour in tension and compression. Extension of the model to contemplate unilateral effect, essential for problems involving cyclic loading, can be done via the tension–compression damage model [24].

3. Local crack-tracking technique for damage localization in orthotropic materials

The local crack-tracking technique proposed in [26] was successfully applied to 2D three-noded standard elements with the aim of simulating the propagation of localized cracks in isotropic quasi-brittle materials. The algorithm was validated by
comparison with benchmark tests, experimental results and finally used for the pushover analysis of the representative bay structure Mallorca Cathedral [49], showing its usefulness even for large scale structures.

The crack-tracking technique proposed in [26] is extended to orthotropic materials in this work. The method is again based on a flag system that labels the finite elements pertaining to the crack path which may experience damage. The labeling is carried out at every time step during the analysis, prior to the stress computation in finite elements. Instead of assuming an explicit orthotropic cracking criterion with direction dependent strength, a mapped damage model is considered as detailed in Section 2. The isotropic criterion in the mapped space is Rankine and the tensile crack is forced to propagate along a single row of finite elements, according to the direction of the maximum mapped principal tensile stress of each finite element. The crack path is thus a 2D polyline propagating within the finite elements, whose segments are orthogonal to the first mapped stress eigenvector at each crossed finite element. The regularization procedure according to the finite element characteristic length mentioned in Section 2.3 ensures that dissipation will be element-size independent.

The crack-tracking algorithm becomes active when there are elements in the FE mesh in which the mapped first principal tensile stress has reached the limit condition according to the Rankine’s criterion. Therefore, the detection of crack root elements is carried out in the mapped space. These elements are labelled and can experience damage during the analysis. In case of multi-crack problems, exclusion zones can be defined by the analyst to set a reasonable distance between cracks [49].

The second step consists in marking the track of finite elements pertaining to the crack path. The criteria used to define the potential damaging elements depend on the magnitude and direction of the mapped principal stresses at each element. The crack propagation direction is computed by considering the direction orthogonal to the corresponding first mapped stress eigenvector of each element. The principal tensile directions of elements, and thus the crack track, are computed in the mapped space, since in this space they are affected by orthotropy by means of the scaling procedure presented in this work. This choice is essential to ensure the correctness of the combination between the mapped damage model and the crack-tracking method, as it will be discussed in Section 4.4.

The procedure uses a flag system to label (a) the damaged elements belonging to a crack consolidated in previous steps, (b) the potential damaging elements pertaining to the potential crack track and (c) the intact elements not able to damage.

A key point of the crack-tracking procedure is the correction of spurious changes of the crack propagation direction. The maximum curvature criterion is adopted, consisting in identifying and correcting the sudden change of direction in the crack track, before marking each potential element (see [26] for further details). This operation avoids crack locking or abrupt “about-turn” under bending conditions.

4. Validation examples

This section presents the validation of the proposed model by means of comparisons with experimental data of orthotropic materials. Firstly, the orthotropic model is used to reproduce the directional strength of wood, the failure envelopes of composite laminates and masonry. Such applications show how to set the parameters of the model and demonstrate the wide applicability of the method to different orthotropic materials. Secondly, the damage model combined with the local crack-tracking technique is used to simulate numerically the cohesive crack propagation in a benchmark uniaxial problem. Finally, the FE analysis of mixed mode fracture experimental tests on brick masonry is presented.

4.1. Directional strength of wood

The uniaxial strength of wood elements is assessed for different orientations of the grain relative to the loading direction. The results from the proposed model are compared with predictions obtained by the common strength criteria generally used for wood.

Hankinson [50] proposed an empirical formula for the determination of the strength of wood. The formula is expressed in terms of the strengths in the axes 1 and 2 (i.e. the grain direction and the perpendicular), the angle \( \theta \) between the loading direction and the 1-axis, and a parameter \( n \), which provides information about the shear strength \( f_{12} \). On the other hand, Norris [51] developed a theory for the strength of orthotropic materials based on the von Mises [5] theory for isotropic materials. He considered an orthotropic material to be made up of an isotropic material by introducing voids in the shape of equal rectangular prisms. The walls of isotropic material between these voids form the three principal planes of the orthotropic material. Using the energy of distortion expression, he obtained a formula for each of these planes, such as the plane 1–2. Of all the macro-mechanical failure theories for anisotropic materials, the Tsai–Hill [52] theory is the most widely used for wood. A summary of these theories is presented in Appendix B.

The predictions obtained by the aforementioned criteria for a Sitka spruce (Picea sitchensis) element subjected to tension are compared with the numerical simulations. According to Green [53], typical properties are chosen for this type of wood: \( f_{11} = 78.3 \text{ MPa}, f_{22} = 2.55 \text{ MPa} \) and \( f_{12} = 7.93 \text{ MPa} \). Fig. 4a presents the tensile strength results obtained by assuming \( n = 1.78 \) in the Hankinson formula and taking \( f_{12} = 6.25 \text{ MPa} \) for Norris and Tsai–Hill criteria. These results are compared with those derived by the proposed model, where the von Mises criterion is considered in the mapped isotropic space. The material parameters of the 1-axis have been selected for the mapped isotropic space. As shown, the different approaches lead to very similar results.
Fig. 4b compares the proposed model with the different theories for the same data, except for $n = 1.97$ in the Hankinson formula and $f_{12} = 7.93$ MPa for Norris and Tsai-Hill criteria. Good agreement is discovered by comparing the proposed model and the other analytical predictions.

4.2. Biaxial failure envelopes for unidirectional fibre-reinforced composite laminae

Fig. 5a shows the comparison of the failure envelope obtained using the proposed model with experimental results [54] for an unidirectional glass fibre reinforced lamina (E-Glass/LY556/HT907/DY063), with a fibre volume fraction $k_f = 0.62$, under shear stresses and normal stresses orthogonal to fibre direction. Experimental results correspond to tubes of 60 mm internal diameter and 2 mm thick. The average properties of the homogenized material are obtained by the information concerning the constituents provided by Soden et al. and the basic formulae of the mixing theory [55]. The experimental data are compared with results derived from the proposed model, in which the Drucker–Prager criterion [56] is considered in the mapped isotropic space. The tension and compression strength values are each the same in the mapped and real spaces and equal 40 MPa and 140 MPa, respectively. Real shear strength has been considered equal to 61.2 MPa according to the obtained experimental value. It can be observed that the model reproduces with an acceptable approximation the experimental failure envelope and agrees perfectly with the predictions from the Tsai–Wu criterion [7].

Fig. 5b shows the comparison of failures stresses obtained using the model proposed with experimental ones [54] for a unidirectional carbon fibre-reinforced lamina (T300/BSL914C epoxy), with a fibre volume fraction $k_f = 0.60$, under shear
stresses and normal stresses in the direction of the fibres. Drucker–Prager criterion has been considered in the mapped isotropic space, with $f^c_{c} = 900$ MPa and $f^c_{t} = 1500$ MPa. Real shear strength has been defined equal to 101.3 MPa according to the most precise obtained experimental value, see Fig. 5b. Good agreement is found between the experimental failure envelope and the predictions from the proposed model and the Tsai–Wu criterion.

4.3. Uniaxial and biaxial failure envelopes for masonry

The ability of the present model to reproduce the orthotropic strength of masonry is assessed through the comparison with experimental data obtained by Page [57,58]. Different orientations of the bed joints relative to the loading direction are considered. For each orientation, three different loading patterns were applied, namely uniaxial tension, uniaxial compression and biaxial tension–compression.

For tensile stress states, the Rankine criterion is considered in the mapped isotropic space, whereas the criterion proposed by Faria et al. [59] is considered for compressive stress states. The directional strength characteristics obtained by the proposed model are presented in Fig. 6a–c and are compared with the data of Page. Also the results obtained by other studies are reported for the sake of argument. Instead of the macro-model considered in this work, Shieh-Beygi and Pietruszczak [60] adopted a mesoscale approach, in which the structural behaviour is examined at the level of constituents, by representing separately bricks and mortar. Kawa et al. [61], on the other hand, make use of a macroscopic failure criterion based on a constrained optimization analysis to assess the orientation of the critical/localization failure plane.

Fig. 5. Failure envelopes for unidirectional laminates: (a) E-Glass/LY556/HT907/DY063 and (b) T300/BSL914C epoxy.
The simulations have been performed for different orientations $\theta$ of the bed joints, namely $0^\circ$, $22.5^\circ$, $45^\circ$, $67.5^\circ$ and $90^\circ$. The load is gradually increased until the ultimate conditions are reached. The following strength values have been considered for the cases of uniaxial tension and biaxial tension–compression: $f_{11} = 0.4$ MPa, $f_{22} = 0.2$ MPa and $f_{12} = 0.32$ MPa.

![Fig. 6. Failure envelopes at different orientations of the bed joints: uniaxial tension (a), biaxial tension–compression (b) and uniaxial compression (c).](image)

The simulations have been performed for different orientations $\theta$ of the bed joints, namely $0^\circ$, $22.5^\circ$, $45^\circ$, $67.5^\circ$ and $90^\circ$. The load is gradually increased until the ultimate conditions are reached. The following strength values have been considered for the cases of uniaxial tension and biaxial tension–compression: $f_{11} = 0.4$ MPa, $f_{22} = 0.2$ MPa and $f_{12} = 0.32$ MPa.
Fig. 7. Failure envelopes for biaxial compression–compression: (a) $\theta = 0^\circ$; (b) $\theta = 22.5^\circ$; and (c) $\theta = 45^\circ$. 
The first value is the mean of the experimental data provided by Page [58] for \( \theta = 0^\circ \), see Fig. 6a. The second strength value has been selected taking into account that, for \( \theta = 90^\circ \), there is a less significant experimental result with a rather pronounced deviation (\( \approx 63\% \)). The shear strength value corresponds to the best fit to Page’s experimental curves for the case of tension-compression with \( \theta = 45^\circ \), see Fig. 6b. On the other hand, the following strength values have been considered for uniaxial compression: \( f_{11} = 7.5 \text{ MPa} \), \( f_{22} = 4.44 \text{ MPa} \) and \( f_{12} = 2.71 \text{ MPa} \). The first and the second value are the mean of the experimental data provided by Page for \( \theta = 0^\circ \) and \( \theta = 90^\circ \), see Fig. 6c. The shear strength value \( f_{12} \) has been selected according to Lourenço [62]. It is worth noting that for all the tests, the material properties in the 1-axis have been selected for the mapped isotropic space. The overall concordance between the trends exhibited by the experimental data and the results obtained by the presented model is remarkable and comparable to those provided by the micro-models.

The set of experimental biaxial compressive strengths given by Page [57] are then considered. The panels were loaded proportionally in the principal stress directions \( \sigma_1 \) and \( \sigma_2 \) along different orientations \( \theta \) with respect to the material axes. The criterion proposed by Faria et al. [59] is considered again. The values considered for real strengths are \( f_1 = 8.74 \text{ MPa} \), \( f_2 = 8.03 \text{ MPa} \) and \( f_{12} = 2.71 \text{ MPa} \) according to Lourenço [62], while the parameter \( K \) of Faria’s criterion has been considered equal to 0.027 in order to fit accurately the experimental data. The material properties in the 1-axis have been selected for the mapped isotropic space. The comparisons between the experimental values and the model are given in Fig. 7a–c, corresponding to orientations of the bed joints equal to \( 0^\circ \), \( 22.5^\circ \) and \( 45^\circ \), respectively. Globally, good agreement is found. The

![Fig. 8. Crack paths for orthotropic holed strip under uniaxial traction: (a) \( \theta = 0^\circ \), (b) \( \theta = 22.5^\circ \), (c) \( \theta = 45^\circ \) and (d) \( \theta = 67.5^\circ \).](image)

![Fig. 9. Load vs. displacement curves for orthotropic holed strips with different angle of orthotropy under uniaxial traction.](image)
uniaxial compressive strength parallel to the bed joints seems to be overestimated by the model, see Fig. 7a, which is due to a debatable definition of failure in the experiments for these loading conditions (early splitting of the bed joints in tension), see Dhanasekar et al. [63]. In fact, the individual “piers” of masonry formed after splitting of the bed joints can withstand a much higher load before collapse is obtained.

4.4. Holed strip under uniaxial traction

The proposed localized damage model is validated through the FE analysis of a benchmark example constituted by a holed strip made of an orthotropic cohesive material.

Calculations are performed with an enhanced version of the FE program COMET [64], developed at the International Center for Numerical Methods in Engineering (CIMNE, Barcelona). The problem is solved incrementally in a (pseudo) time step-by-step manner. Within each step, a modified Newton–Raphson method (using the secant stiffness matrix), together with a line-search procedure, are used to solve the corresponding nonlinear system of equations. Convergence of a time step is attained when the ratio between the norm of the iterative residual forces and the norm of the total external forces is lower than 1%. Pre- and post-processing are done with GiD [65], also developed at CIMNE.

The specimen size is 200 \times 400 \text{ mm}^2 and the perforation is a 14 \times 14 \text{ mm}^2 square. Axial horizontal displacements are applied to both the strip ends. Since the problem is symmetrical, only the right half of the computational domain is considered and discretized with an unstructured mesh with 1903 nodes and 3602 elements with average size of 5 mm. The problem is analysed assuming two-dimensional plane stress conditions.

A fictitious orthotropic material with one weak fracture direction is considered for the strip, with the only aim of verifying the agreement between the crack model and the expected result. The following properties are considered: Young’s moduli $E_1 = E_2 = 30 \text{ GPa}$, Poisson’s ratios $\nu_{12} = \nu_{21} = 0$, shear modulus $G_{12} = 12.5 \text{ GPa}$, strength values $f_{11} = f_{12} = 200 \text{ MPa}$ and

![Fig. 10. Layout and geometry of mixed mode fracture tests carried out by Reyes et al. [66,67].](image)

![Fig. 11. Stress–strain responses to uniaxial tension along different directions of the orthotropic material considered in the FE macro-model.](image)
$f_{22} = 2$ MPa, mode I fracture energies $G_{f,1} = 2$ MJ/m$^2$ and $G_{f,2} = 200$ J/m$^2$. The parameters of the 1-direction are selected for the mapped isotropic space, in which a Rankine criterion is defined.

Fig. 8a–d shows the tensile damage contours obtained for angles of orthotropy of $0^\circ$, $22.5^\circ$, $45^\circ$ and $67.5^\circ$. The crack grows from the perforation and then it propagates rightwards following the same inclination of the angle of orthotropy, due to the weak fracture direction in the cohesive material considered. The combination of the orthotropic model with the crack-tracking technique can reproduce correctly the expected results.

Fig. 12. FE mesh for the numerical modelling of the test.

Fig. 13. Comparison between experimental crack paths (in red) and numerical predictions (in black) for different inclinations of bed joints: (a) $\theta = 0^\circ$, (b) $\theta = 45^\circ$, (c) $\theta = 90^\circ$ and (d) $\theta = -45^\circ$. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
It is worth emphasizing that the correct crack path can be provided by the FE model only if the crack-tracking procedure is carried out in the scaled (isotropic) mapped space. As discussed in Section 3, the direction of the crack track is assumed orthogonal to the direction of the mapped first principal stress, since the cracking criterion is set in the scaled (isotropic) mapped space [1,25]. Note that if the crack-tracking technique was carried out in the real space, the crack paths in the holed strips would result all horizontal for different angles of orthotropy. On the other hand, if the direction of cracks is evaluated by using the mapped isotropic stresses affected by orthotropy via the scaling procedure, the correct crack paths shown in Fig. 8a–d are obtained.

Fig. 9 shows the (half)-load vs. (half)-imposed vertical displacement curves obtained by the numerical analyses of strips with different angles of orthotropy. As shown, the model is able to describe correctly the increase of the failure load from the condition in which traction is perpendicular to the weakest fracture plane \((\theta = 0^\circ)\) to that in which traction is perpendicular to the strongest material direction and the failure load is very high \((\theta = 90^\circ)\).

4.5. Mixed mode fracture tests on brick masonry beams

The localized damage model is further validated by simulating numerically mixed mode fracture tests on brick masonry under three-point bending configuration with non-symmetrical boundary conditions (Fig. 10).

As in the previous example, calculations are performed with an enhanced version of COMET [64]. The problem is solved in an incremental manner by adopting an arc-length algorithm in order to trace the highly nonlinear structural response.

The FE simulations are compared with the experimental tests presented by Reyes et al. [66,67]. Small-scale bricks of \(48 \times 24 \times 10\ mm^3\), cut from commercial solid clay bricks, were adopted for the construction of specimens. The mortar used for masonry was composed of Portland cement CEM I 42.5N (ASTM Type I), siliceous sand of 1 mm maximum size, and it is additivated with silica fume (13% of cement weight) and super plasticiser (3% of the cement and fume silica weight). Twelve

Fig. 14. Comparison between experimental and numerical results in terms of load vs. CMOD for different inclinations of bed joints: (a) \(\theta = 0^\circ\), (b) \(\theta = 45^\circ\), (c) \(\theta = 90^\circ\) and (d) \(\theta = -45^\circ\).
beams with size $675 \times 150 \times 26.5 \text{ mm}^3$ were built by layering the bricks according to four orientations of the bed joints, i.e. $0^\circ, 45^\circ, 90^\circ$ and $-45^\circ$. The specimens were notched in the middle of the span, with a notch to depth ratio of 0.5. In all cases the tip of the notch was inside a brick unit. Preliminary characterization tests were carried out with the aim of assessing the properties of masonry for different orientations of the joints, i.e. $0^\circ, 45^\circ$ and $90^\circ$. The mechanical properties of masonry at the macro scale derived from mode I fracture tests are reported in the following for angles of orthotropy respectively of $0^\circ, 45^\circ$ and $90^\circ$: Young’s modulus 28, 22 and 21 MPa, tensile strength 5.8, 4.1 and 2.4 MPa and mode I tensile fracture energy 75, 54 and $33 \text{ J/m}^2$.

The results of the preliminary characterization tests are used to calibrate the macro properties of the FE model, in which the composite material is modelled as a homogeneous orthotropic continuum. Accordingly, the Young’s moduli and strength values along the horizontal and vertical directions of masonry are $E_1 = 28 \text{ GPa}$, $E_2 = 21 \text{ GPa}$, $f_{11} = 5.8 \text{ MPa}$ and $f_{22} = 2.4 \text{ MPa}$. Reasonable values for Poisson’s ratios ($\nu_{12} = 0.2$, $\nu_{21} = 0.15$) and shear modulus ($G_{12} = 10 \text{ GPa}$) of masonry have been chosen, since they were not provided by the authors. The third strength parameter necessary to map the isotropic Rankine criterion, $f_{12}$, has been calibrated in order to obtain a strength of 4.1 MPa under uniaxial stress for angle of orthotropy $\theta = 45^\circ$. After a parametrical analysis the value $f_{12} = 6.7 \text{ MPa}$ has been used. The orthotropic softening behaviour has been also calibrated making reference to the experimental tests, thus the mode I fracture energies $G_{f1} = 75 \text{ J/m}^2$ and $G_{f2} = 33 \text{ J/m}^2$ have been chosen. The stress–strain responses to uniaxial tension along different directions of the orthotropic material are shown in Fig. 12. As can be seen, the parameters of the proposed damage model have been adjusted properly to the experimental results.

The FE model discretizes the computational domain with an unstructured mesh with 6687 nodes and 13,333 elements (Fig. 12). The average mesh-size in the zone crossed by the tensile fracture is $h_e = 2 \text{ mm}$. The problem is analysed assuming two-dimensional plane stress conditions.

Fig. 13 shows the comparison between the experimental crack paths and numerical predictions for different inclinations of the bed joints. The experimental tracks are greatly dependent on the microstructure of the composite material, since they follow the texture of units and the geometry of mortar joints. However, the numerical predictions fit quite well within the experimental envelope and match well the experimental crack patterns.

Fig. 14 shows the comparison between the experimental and numerical results in terms of load vs. CMOD for different inclinations of bed joints. The proposed model predicts correctly the variation of peak load with the angle of orientation of brick layers, from the lowest value for $\theta = 45^\circ$, due to crack propagating along the brick–mortar interface, to highest value for $\theta = -45^\circ$, due to crack cutting the bricks perpendicularly. Also the dependence of material orthotropy on structural stiffness is well described. The FE model slightly underestimates the experimental values in some cases, e.g. the peak load for $\theta = 90^\circ$ and the inelastic dissipation for $\theta = 0^\circ$ and $\theta = -45^\circ$. A possible explanation is that the numerical crack paths are shorter than the experimental ones. This is due to the macro-modelling strategy that cannot distinguish units from joints [68].

5. Conclusions

A novel methodology has been presented to simulate numerically the tensile crack propagation in orthotropic materials. An implicit orthotropic damage criterion is formulated by defining an isotropic criterion in a mapped space. Linear transformations for stress and strain tensors from the orthotropic space to the isotropic mapped one are established. The different behaviours along the material axes can be reproduced by means of a very simple formulation, taking advantage of the well-known isotropic damage models. A major advantage lies in the possibility of adjusting an isotropic criterion to the particular behaviour of the orthotropic material. Complex orthotropic damage threshold surfaces can be built by using simpler and well-known isotropic ones, hence avoiding the complex anisotropic yield functions normally adopted in Plasticity. The model can be used for the analysis of different orthotropic materials, such as wood, fibre reinforced composites and masonry.

The mapped damage model is combined with a crack-tracking technique to analyse the fracture of orthotropic materials in the framework of FE method. The numerical tool is suitable for modelling of localized cracking in 2D problems with standard triangular finite elements. The tracking method is able to provide better results than the classical SCA, in terms of mesh-objectivity, numerical robustness and stability. It has been combined carefully with the mapped damage model and validated through the FE analysis of mixed mode fracture tests on masonry members. The results show that the model is able to capture the influence of orthotropy in the structural response, for different inclinations of the brick layers. The numerical results are in a very good agreement with the experimental ones.

The proposed localized damage model is a good compromise between accuracy and simplicity. It requires a low number of input parameters, to be obtained from standard experimental tests. Since the computational costs is limited, it can be used in large scale computations [47,68,69].

Acknowledgments

This research has received the financial support from the Ministerio de Educación y Ciencia of the Spanish Government and the ERDF (European Regional Development Fund) through the research project MICROPAR (Identification of mechanical
and strength parameters of structural masonry by experimental methods and numerical micro-modelling, ref num. BIA2012-32234).

Appendix A

This Appendix presents the expression of the damage criteria in the mapped space that have been considered in this paper.

For the Rankine criterion, the equivalent stress is expressed as:
\[ \tau^* = \langle \sigma^* \rangle \]  
(A.1)

where \( \sigma^1 \) is the largest principal effective stress. The Macaulay brackets \( \langle \rangle \) returns the value of the enclosed expression if positive, but sets a zero value if negative. The initial value of the damage threshold, according to (7), is \( r_0^* = f^* \).

The von Mises criterion [5] can be expressed as follows:
\[ \tau^* = (3\sqrt{2}) r^*_{oct}/2. \]  
(A.2)

where \( r^*_{oct} \) is the octahedral shear stresses obtained from \( \sigma^* \). The corresponding initial value of the damage threshold is \( r_0^* = f^* \).

The Drucker–Prager criterion [56] can be expressed as follows:
\[ \tau^* = 3\alpha \sigma^*_{oct} + \sqrt{3} \tau^*_{oct} \]  
(A.3)

where \( \sigma^*_{oct} \) is the octahedral normal stress obtained from \( \sigma^* \) and \( r_0^* = k \). Constants \( \alpha \) and \( k \) control the shape of the failure cone.

The damage criterion proposed by Faria et al. [59] is based on the Drucker–Prager one and can be defined as follows:
\[ \tau^* = \sqrt{3}(K \sigma^*_{oct} + \tau^*_{oct}) \]  
(A.4)

where constant \( K \) controls the aperture of the inherent Drucker–Prager cone. The corresponding initial value of the damage threshold is \( r_0^* = (\sqrt{3}/3) (K - \sqrt{2}) f^* \).

Appendix B

This Appendix presents the expressions of the orthotropic strength criteria that have been used in Sections 4.1 and 4.2 for the comparisons with the proposed mapped damage models. All the presented criteria are referred to the 2D plane-stress conditions.

The empirical formula proposed by Hankinson [50] for the strength of wood in the \( x \) direction of a \( xy \) plane is as follows:
\[ f_x = f_{11} f_{22} \sin^2 \theta + f_{12} \cos^2 \theta \]  
(B.1)

where \( f_{11}, f_{22} \) are the strengths in the grain direction and perpendicular to the grain, \( \theta \) is the angle from the 1 axis in the 1–2 plane and \( n \) is a coefficient varying between 1.5 and 2.

The orthotropic strength criterion proposed by Norris [51] is based on von Mises theory for isotropic materials. The axial strength in a global plane is given by
\[ \frac{1}{f_1^2} = \frac{\cos^4 \theta}{f_{11}^2} + \frac{\sin^4 \theta}{f_{22}^2} + \left( \frac{1}{f_{12}^2} - \frac{1}{f_{11} f_{22}} \right) \sin^2 \theta \cos^2 \theta \]  
(B.2)

The Tsai–Hill criterion [52] is given by the following condition
\[ \frac{\sigma_{11}^2}{f_{11}^2} - \frac{\sigma_{11} \sigma_{22}}{f_{11} f_{22}} + \frac{\sigma_{12}^2}{f_{22}^2} + \frac{\sigma_{22}^2}{f_{22}^2} = 1 \]  
(B.3)

The Tsai–Wu criterion [7] is given by the equation
\[ \left( \frac{1}{f_{11}} + \frac{1}{f_{12}} \right) \sigma_{11} + \left( \frac{1}{f_{22}} + \frac{1}{f_{12}} \right) \sigma_{22} + \left( -\frac{1}{f_{11} f_{12}} \right) \sigma_{11}^2 + \left( -\frac{1}{f_{12}^2} \right) \sigma_{22}^2 + \left( \frac{1}{f_{12}} \right) \sigma_{12}^2 + 2F_{12} \sigma_{11} \sigma_{22} = 1 \]  
(B.4)

where \( f_{ii}^* \) are the tension and compression strengths along \( i \)-th axis and \( F_{12} \) is the so-called interaction coefficient.

References