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Abstract 

 

In this paper, experimental evidence, theoretical predictions and the finite element modelling of 
the structural size effect in cracking problems of quasi-brittle materials are discussed and 
assessed against each other. The fracture process is modelled through the crack band approach, 
using an isotropic damage constitutive law. The correct dissipation of the fracture energy, 
essential for modelling the phenomenon with precision, is introduced. An enhanced accuracy 
mixed finite element formulation is used to ensure mesh bias independent results. Several 
experimental campaigns where size effect is investigated are numerically reproduced in 2D and 
in 3D to assess the feasibility and the performance of the method. For this, mode I and mixed 
mode I and II fracture situations are considered in notched and unnotched beams. The 
correlation of the experimental results with the numerical simulations shows the capacity of the 
mixed FE formulation to reproduce crack paths, force-displacement curves and collapse 
mechanisms with precision for a wide range of structural sizes. The enhanced accuracy FE 
formulation eliminates the spurious mesh dependency that is characteristic of standard FE 
simulations. In addition, the model is able to follow Bazant’s size effect law with precision. 
Results confirm that the energy release rate in the progressing fracture is the fundamental cause 
of size effect in quasi-brittle materials. This is additionally verified in a study of the relative 
influence of statistical and energetic size effect. Computations show that the essential 
requirements to suitably simulate the phenomenon are (1) a fracture model ensuring the correct 
energy dissipation at the crack and (2) a method guaranteeing mesh objective results. 
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 Introduction 1.
 

Structural size effect refers to the variation, motivated by a change of size, of the load capacity 
of a structure from estimations made using stress failure criteria [1]. The observed behavior of 
quasi-brittle specimens in laboratory tests does not correlate with the one perceived in real sized 
structures, because the latter are usually much bigger. This phenomenon has a profound impact 
in many practical applications such as in concrete structures, as evidenced by its incorporation 
into the 2019 version of the American Concrete Institute design norm for structural concrete [2], 
but also in geomechanics, composite materials or artic ice engineering among others [3, 4]. 

In order to take into consideration the physical phenomenon of size effect in engineering 
applications the use of numerical modelling is required. Both by academics and practitioners, 
the most widely used strategy to analyze fracture and structural failure with the finite element 
method is the smeared crack approach, introduced more than 50 years ago by Rashid [5] and 
adopted in this work. Within this approach, the fracture is modeled through the degradation of 
the material at the constitutive level.  

Specifically, the crack band theory (CBT), introduced by Bazant in [6], is considered herein. 
CBT consists in regularizing, or “smearing”, the displacement jump across a zero thickness 
crack into the corresponding nominal strains across a band of small, but finite, thickness. 
Consistency and, therefore, convergence, of the derived FE approach depends on two factors. 
On the one hand, the regularization of a discontinuous displacement field needs to be proved 
consistent at continuum level, before FE discretization is performed. This consistency is 
discussed in [7, 8], where, among other requirements, it is shown that to ensure correct energy 
dissipation when the cohesive crack opens it is necessary to relate, at continuum level, the 
cohesive behavior of the regularized crack, i.e. its softening behavior, to the actual width of the 
band. As will be discussed in detail in Section 2, achieving the proper energy dissipation when 
the crack is developing is an essential requirement for the correct assessment of the size effect 
phenomenon [4, 9, 10, 11]. On the other hand, the FE discrete problem needs to be consistent 
with the regularized continuum one. This requires from the FE formulation to relate the width of 
the crack to the size of the FE mesh. Therefore, the required adjustment of the softening 
behavior of the material with respect to the bandwidth of the regularized crack at continuum 
level, translates, when introducing the FE discretization, to its correction with respect to the FE 
size. This avoids spurious mesh size dependent results, as intended when the crack band theory 
was introduced in [6].  

Notwithstanding the mesh size representation, the main difficulty posed by the smeared crack 
approach and the crack band theory, when applied with standard displacement-based FEs, is the 
spurious mesh dependency that it suffers when computing crack trajectories. However, mesh-
bias independence is an indispensable requirement of the numerical model. Firstly, for a given 
structural size, the failure mechanism predicted by the numerical model must be the same 
independently of the FE mesh used in the analysis. Otherwise, the numerical solution is, in plain 
terms, useless. Secondly, and regarding size effect specifically, significant variations in the 
brittleness of the structural behavior caused by the changes in size may cause significant 
changes in the development of the collapse mechanism [11]. To overcome the lack of mesh-
objectivity displayed by the smeared crack method in some situations, auxiliary crack tracking 
techniques have been proposed and successfully applied [12, 13]. 

Because of this drawback of the crack band theory, several alternative techniques have been 
proposed over the last decades to avoid mesh bias dependency in fracture problems. Gradient 
enhanced [14, 15, 16], nonlocal [17, 16] and phase-field models [15, 18, 19, 20] have been used 
to avoid spurious mesh-dependency of the computed results in terms of the crack path. 
However, these techniques use a localization limiter dependent on an internal length that 
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governs the size of the crack band width. As it has been emphasized in [21], a clear physical 
interpretation and direct link between the length parameter in the model and the characteristic 
length of the material is arguable. “Geometrically” regularized gradient-damage [22] and phase-
field models [23, 24, 25] have been recently proposed. However, the practical use of all these 
methods is limited to specific situations and constitutive behaviors. 

It has been shown in previous works [26, 27] that in cracking problems of quasi-brittle 
materials, the mesh dependency of the standard displacement-based FE formulation in solid 
mechanics is in fact caused by their lack of local convergence in the computed stress and strain 
fields. This is especially harmful because the trajectory is determined by the stresses and strains 
that develop in quasi-singular points near the tip of the propagating crack. The stress and strain 
at these points may be inaccurately computed, averting the correct computation of the crack 
trajectory. 

In this work, the issue of spurious mesh-dependency is addressed through an enhanced-accuracy 
mixed strain/displacement FE formulation, proposed and developed in references [26, 27, 28, 
29, 30, 31, 32]. In the mixed FE formulation, strains are additional nodal unknowns of the FE 
problem, as well as the nodal displacements. This provides an independent discrete interpolation 
of the strain field, instead of being computed at element level by discrete differentiation. This 
kinematic enhancement increases the rate of convergence of the strain and stress fields. Their 
local and global convergence is ensured in the quasi-singular situations that arise near the tip of 
the progressing crack. The spurious mesh dependency and lack of local convergence which 
hamstrings cracking problems solved with standard FE is prevented. In this way, it is possible to 
obtain accurate results in terms of fracture paths without the use of any crack tracking technique 
and with far coarser mesh densities than the ones required in phase-field formulations. 

In previous works, the authors have demonstrated the use of mixed displacement/pressure FE to 
assess structural size effect in relation to mode II failure [11] and also shown the enhanced 
accuracy and mesh-objectivity achievable by the mixed strain/displacement FE in mode I and 
mixed mode fracture. Ensuingly, in this work, the strain/displacement mixed formulation is 
applied to assess structural size effect in mode I and mixed mode fracture situations. 

A classical local damage constitutive law is employed to represent cracking in quasi-brittle 
materials. To model mode I and mixed mode I and II fracture, isotropic Rankine damage is 
considered. The nonlinear behavior of the material is characterized by two parameters: the 
(tensile) strength and the fracture energy. The capacity of the proposed constitutive law to 
reproduce size effect, including the perfectly ductile and perfectly brittle limits, is investigated. 
The bandwidth of the crack is set in function of the finite element size. It is determined by the 
resolution of the FE only, as required in the crack band method [6]. 

The objectives of this work are: (1) to establish the necessary and sufficient features required in 
a constitutive law for modelling the size effect phenomenon, (2) to show the performance of the 
proposed model in reproducing results consistent with documented data with regard collapse 
mechanisms, force-displacement curves and crack trajectories for a wide range of structural 
sizes, (3) to demonstrate the capability of the mixed FE formulation in producing precise and 
mesh independent results, (4) to show that the main and dominant influencing factor of size 
effect in quasi-brittle materials is the release of stored energy of the structure, (5) to demonstrate 
the performance of the model in accurately reproducing Bazant’s size effect law over a wide 
range of structural sizes. 

The outline of this paper is as follows. In Section 2 structural size effect is introduced. In 
Section 3 the isotropic damage constitutive model used in this work is described. In Section 4 
the mixed FE formulation employed to obtain mesh-bias independent results with enhanced 
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accuracy is outlined. Section 5 presents the numerical simulations of several experimental 
campaigns where the capacity of the model in reproducing the size effect phenomenon is 
thoroughly analyzed. In Section 6 a mesh-sensitivity study is performed to show the aptness of 
the model in producing results without spurious mesh dependence. In Section 7 the relative 
influence of the statistical variability of the mechanical properties of the material as a source of 
size effect is assessed. In Section 8 the ability of the model in reproducing Bazant’s size effect 
law is investigated. Finally, some conclusions are given in Section 9. 
 

 Structural size effect 2.
 

In this section, theoretical and practical considerations regarding structural size effect are given. 
According to Bazant [1, 3], several sources of structural size effect have been observed: 

• Release of stored energy 
• Statistical size effect 
• Boundary layer effect 
• Diffusion phenomena 
• Hydration heat 

However, not all these sources have the same influence in the phenomenon. Undoubtedly, the 
most important one is, by far, the release of stored energy. In quasi-brittle problems, the relative 
influence of statistical size effect is considered unimportant when compared to the effect that the 
release of the stored energy has in the overall phenomenon. The last three sources are deemed to 
have only a secondary impact and can be effectively neglected in laboratory tests where 
specimens have a constant thickness for all the sizes [1, 4]. 

Therefore, the study of the size effect phenomenon is principally related to energetic 
considerations [4, 9, 10, 11]. When the fracture develops the stored elastic energy in the 
structure is released into the crack front. This energy is dissipated and engaged into the process 
of the crack surface formation. The ratio between the elastic energy stored in the structure and 
the energy dissipated through the crack tip varies when size changes. This is the main cause for 
structural size effect. These energetic considerations also govern the relative extent of the 
fracture process zone within the structure. In plasticity theory, the size of the process zone is of 
the order of the structural size. The classical linear elastic fracture mechanics (LEFM) theory is 
developed under the hypothesis that the fracture process zone is negligible with respect to the 
structural size. For actual quasi-brittle materials, the extent of the fracture process zone cannot 
be neglected and it grows significantly when size decreases.  

According to the dimensional analysis derived in reference [11], in situations involving 
materials with softening, the brittleness of the problem is governed by the brittleness number 
Π𝐵𝐵, the ratio 𝐷𝐷 𝐿𝐿⁄  between the characteristic size of the structure 𝐷𝐷 and the material 
characteristic length 𝐿𝐿, which depends only on the material properties. Irwin’s characteristic 
length 𝐿𝐿 is equal to 

𝐿𝐿 =
𝐸𝐸𝐺𝐺𝑓𝑓
(𝑓𝑓𝑡𝑡)2

 (1) 

where 𝐸𝐸 is Young’s modulus, 𝑓𝑓𝑡𝑡 is the (tensile) strength and 𝐺𝐺𝑓𝑓 is the fracture energy of the 
material, which is the energy dissipated per unit of area of the fracture surface. Thus, from 
energy considerations, the brittleness of the problem is size-dependent. 

Consequently, collapse in smaller specimens occurs in a more ductile way while larger 
specimens fail in a more brittle manner. In the small limit case, the formation of a failure 
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mechanism takes place as a result of the yielding of an extensive area. In the large scale limit, 
perfect brittle failure occurs. For intermediate sizes failure is due to the formation of a crack that 
gradually develops in the structure while stress redistribution and the release of stored energy 
into the crack front takes place [1, 10]. 

From experimental observations and theoretical considerations [9] Bazant’s size effect law has 
been proposed to represent the phenomenon. It describes the relationship between the load 
capacity of the structure and its characteristic size. It is defined in its simplest form as [1]: 

𝜎𝜎𝑁𝑁𝑢𝑢 = 𝐵𝐵𝑓𝑓𝑡𝑡 �1 +
𝐷𝐷
𝐷𝐷0
�
−12

 (2) 

where 𝜎𝜎𝑁𝑁𝑢𝑢 is the nominal strength, defined as 

𝜎𝜎𝑁𝑁𝑢𝑢 = 𝑐𝑐𝑛𝑛
𝑃𝑃𝑢𝑢
𝐷𝐷𝐷𝐷

                                  𝜎𝜎𝑁𝑁𝑢𝑢 = 𝑐𝑐𝑛𝑛
𝑃𝑃𝑢𝑢
𝐷𝐷2 (3) 

where 𝐷𝐷 is the characteristic size of the structure, 𝑏𝑏 is its thickness, 𝑃𝑃𝑢𝑢 is the ultimate/failure 
load of the structure, 𝑓𝑓𝑡𝑡 is the strength of the material and 𝐷𝐷0 is a reference structural size; 𝐵𝐵 is a 
dimensionless constant which depends on the shape and the loading of the structure but not on 
its size and 𝑐𝑐𝑛𝑛 is a dimensionless constant that can be arbitrarily chosen. The law in Eq. (2) is 
only valid for quasi-brittle materials over a limited range of 𝐷𝐷. Modifications have been 
proposed in references [1, 33] to account for larger ranges of sizes and also for the particular 
case of unnotched structures. This law has been introduced in the 2019 version of the ACI code 
for structural concrete [2] for revising the strength of concrete in some situations through the 
inclusion of a size effect modification factor. In [2], which is intended for design purposes, 𝐷𝐷0 
for concrete is taken as 10 𝑖𝑖𝑖𝑖 = 0.254 𝑚𝑚. 

Assuming that the reference structural size 𝐷𝐷0 is linearly dependent with Irwin’s characteristic 
length 𝐿𝐿, 𝐷𝐷0 = 𝐴𝐴−2𝐿𝐿, 𝐴𝐴 being a constant similar to 𝐵𝐵, allows to rewrite Bazant’s law in Eq. (2) 
as  

𝜎𝜎𝑁𝑁𝑢𝑢 = 𝐵𝐵𝑓𝑓𝑡𝑡 �1 + 𝐴𝐴2
𝐷𝐷
𝐿𝐿
�
−12

 

         = 𝐵𝐵𝑓𝑓𝑡𝑡(1 + 𝐴𝐴2Π𝐵𝐵)−
1
2 

(4) 

where Π𝐵𝐵 = 𝐷𝐷 𝐿𝐿⁄  is the brittleness number defined in [11]. 

In Figure 1 the size effect behavior described by Bazant’s law in Eq. (2) is shown, where the 
role of the reference size 𝐷𝐷0 is appreciated. The law indicates how for small structures, when 
𝐷𝐷 𝐷𝐷0⁄  is much smaller than 1, Π𝐵𝐵 → 0, the structure collapses following the predictions of limit 
analysis, which does not contemplate size effect, as the nominal strength of the material is 
constant with size: 𝜎𝜎𝑁𝑁𝑢𝑢(Π𝐵𝐵 → 0) = 𝐵𝐵𝑓𝑓𝑡𝑡. For large structures, when 𝐷𝐷 𝐷𝐷0⁄  is much larger than 1, 
Π𝐵𝐵 → ∞, the structure fails following the LEFM theory, with the strongest possible size effect, 
the nominal strength being inversely proportional to the square root of the structural size [3]: 
𝜎𝜎𝑁𝑁𝑢𝑢(Π𝐵𝐵 → ∞) = (𝐵𝐵 𝐴𝐴⁄ )�𝐸𝐸𝐺𝐺𝑓𝑓(𝐷𝐷)−1 2⁄  It can be seen that in large notched specimens, where 
stress singularities exist, a failure criterion expressed in terms of maximum stress is not 
adequate. In such cases, an energy failure criterion such as the one introduced in LEFM is 
applicable. For intermediate cases a gradual transition from one failure mode to the other takes 
place, as it typically happens in most applications involving quasi-brittle fracture [10].  

 

(3D Scaling) (2D Scaling); 
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Figure 1. Bazant's size effect law 

It is noteworthy that even though the size effect law is generally defined in terms of the nominal 
strength 𝜎𝜎𝑁𝑁𝑢𝑢, this is in fact an indirect way of describing the peak load 𝑃𝑃𝑢𝑢 sustainable by the 
structure in terms of its characteristic size. Therefore, the nominal stress is not a real stress but a 
load parameter, useful to depict in a clearer way the deviation from limit analysis due to size 
effect [4].  

 
Figure 2. Force-displacement curves, normalized with size, of geometrically similar structures exhibiting size 

effect 

Experimental evidence shows that, in addition to the consequences that it has on the structural 
load capacity, size effect also governs the ductility and post-peak behavior of the structure. For 
loading under displacement control, failure in larger sized structures occurs closer to the peak 
load [1, 3], as shown in Figure 2. The fact that the post-peak curves of large structures descend 
more steeply than in smaller ones [4, 10] is also due to the fact that, once properly normalized, 
the energy dissipated in the failure process is comparatively smaller in larger structures. 

When considering the scaling of structures in general, several other factors do not scale 
geometrically apart from their brittleness. For example, in dynamic analysis, a big concern is the 
fact that the strain rate is influenced by the scaling factor, affecting the predictions of the 
stresses obtained from scaled models [34, 35, 36]. This issue, which requires specific attention, 
is not treated in this work which focusses on structural size effect under quasi-static loading. It 
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should also be noted that weight forces do not scale geometrically neither. Even if considering 
them in FE analysis is straightforward, they can be effectively neglected in laboratory tests of 
small concrete specimens. Regarding scale modelling, it should also be taken into consideration 
that in laboratory tests the possibilities of scaling the aggregate inside concrete are limited. 
 

 Isotropic damage model 3.
 

In this section, the formulation of the isotropic damage constitutive law is presented. Employing 
Voigt’s convention, the strain and stress tensors are represented as vectors. In 3D the strain 
vector is 𝜺𝜺 = �𝜀𝜀𝑥𝑥 , 𝜀𝜀𝑦𝑦, 𝜀𝜀𝑧𝑧, 𝛾𝛾𝑥𝑥𝑥𝑥,𝛾𝛾𝑥𝑥𝑥𝑥, 𝛾𝛾𝑦𝑦𝑦𝑦�

𝑇𝑇 and stress vector is  𝝈𝝈 = �𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦,𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥, 𝜏𝜏𝑥𝑥𝑥𝑥, 𝜏𝜏𝑦𝑦𝑦𝑦�
𝑇𝑇. In 

an isotropic damage model 𝜺𝜺 and 𝝈𝝈 are linked through the constitutive equation: 

𝛔𝛔 = 𝐃𝐃(𝑑𝑑) 𝜺𝜺 = (1 − 𝑑𝑑)𝐃𝐃0 𝜺𝜺 (5) 
 

Energy dissipation, size effect and FE meshes 
 

Regarding energy dissipation, at the continuum level, when considering non-regularized cracks, 
the total energy dissipated during the fracture process is proportional to the area of the crack 
surface. However, when the regularization of the cracks is introduced, at continuum level, the 
total energy dissipation is proportional to the volume of the localization band [7, 8]. Therefore, 
for ensuring consistency between the regularized and non-regularized problems, the fracture 
energy per unit area G𝑓𝑓 is substituted by 𝑔𝑔𝑓𝑓 = G𝑓𝑓 𝑏𝑏⁄  as the energy dissipated by unit volume, 𝑏𝑏 
being the width of the regularized crack. In such case, the same brittleness number as in the 
original problem holds 

Π𝐵𝐵 =
𝐷𝐷
𝑏𝑏

·
𝑏𝑏
𝐿𝐿

=
𝐷𝐷
𝐿𝐿

 (6) 

In the discrete FE problem, the crack bandwidth 𝑏𝑏 is related to the FE size ℎ (𝑏𝑏 = 𝛼𝛼ℎ, 𝛼𝛼 being a 
constant, 𝛼𝛼 = 1 for standard FE, 𝛼𝛼 = 2 for mixed FE) and the same brittleness number is 
recovered 

Π𝐵𝐵 =
𝐷𝐷
𝛼𝛼ℎ

·
𝛼𝛼ℎ
𝐿𝐿

=
𝐷𝐷
𝐿𝐿

 (7) 

guaranteeing the consistency between the continuum and the discrete problems with respect to 
fracture energy dissipation and mesh-size objectivity. 

Therefore, if structural size effect is investigated by increasing 𝐷𝐷 while the ratio 𝐷𝐷 ℎ⁄  fixed (that 
is, scaling the mesh with the structural size), brittleness is exactly expressed by the ratio ℎ 𝐿𝐿⁄ , 
where ℎ increases in the same way as 𝐷𝐷. 

Let Π0 = 𝐷𝐷0 𝐿𝐿⁄  be the brittleness of the reference size 𝐷𝐷0 and the scale 𝑠𝑠 = 𝐷𝐷 𝐷𝐷0⁄ . Then, for a 
size 𝐷𝐷 

Π𝐵𝐵 =
𝐷𝐷
𝐿𝐿

=
𝐷𝐷0
𝐿𝐿

·
𝐷𝐷
𝐷𝐷0

= Π0 · 𝑠𝑠 (8) 

When the ratio 𝐷𝐷 ℎ⁄  is fixed, 𝐷𝐷 ℎ⁄ = 𝐷𝐷0 ℎ0⁄  is constant, ℎ0 being the corresponding FE size 
when 𝐷𝐷 = 𝐷𝐷0, and  

Π𝐵𝐵 =
𝐷𝐷
𝐿𝐿

=
𝐷𝐷0
𝐿𝐿

·
𝐷𝐷
𝐷𝐷0

=
𝐷𝐷0
𝐿𝐿

·
ℎ
ℎ0

= Π0 · 𝑠𝑠 (9) 
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So, in such case, the scale 𝑠𝑠 is determined by the actual size of the structure or the finite 
elements, as 𝑠𝑠 = 𝐷𝐷 𝐷𝐷0⁄ = ℎ ℎ0⁄ . 
 

 Mixed FE formulation 4.
 

In this work a mixed ε/u formulation is adopted to solve the mechanical problem with enhanced 
accuracy. Apart from other strong points, this formulation avoids the spurious mesh dependency 
that is characteristic in fracture simulations of quasi-brittle materials. In this section, the mixed 
FE formulation used to compute all the simulations in this work is briefly presented. The 
formulation is fully described in reference [29]. For additional details, references [26, 27, 28, 
30, 32, 38] are recommended. 

In this technique, the variational form of the nonlinear solid mechanics problem is posed 
considering the displacements 𝒖𝒖 and the strains 𝜺𝜺 as unknowns. Following Voigt’s notation, the 
compatibility equation relates the strain and displacement fields 

𝜺𝜺 = 𝐒𝐒 𝒖𝒖 (10) 

where 𝐒𝐒 is the differential symmetric gradient operator. In addition, the stress vector 𝝈𝝈 and the 
body forces vector 𝐟𝐟 are linked through the Cauchy momentum equation, written in matrix form 
as  

𝐒𝐒𝑇𝑇𝝈𝝈+ 𝐟𝐟 = 𝟎𝟎 (11) 

where 𝐒𝐒𝑇𝑇 is the differential divergence operator, adjoint to the 𝐒𝐒 in Eq. (15). The constitutive 
equation connects the stress and strain vectors 

𝝈𝝈 = 𝐃𝐃 𝜺𝜺 (12) 

where 𝐃𝐃 is the appropriate secant matrix.  It is a thermodynamic requirement that 𝐃𝐃 is 
symmetric. 

By pre-multiplying Eq. (15) by the secant matrix 𝐃𝐃 and substituting Eq. (17) into Eq. (16) a 
system of two equations is derived 

−𝐃𝐃𝜺𝜺 + 𝐃𝐃𝐒𝐒𝒖𝒖 = 𝟎𝟎 (13) 

𝐒𝐒𝑇𝑇(𝐃𝐃𝜺𝜺) + 𝐟𝐟 = 𝟎𝟎 (14) 

Eqs. (18)-(19) compose the strong form of the mixed 𝜺𝜺/𝒖𝒖 formulation together with the proper 
boundary conditions. The problem is symmetric. 

The weak form of the problem is attained by multiplying Eqs. (18) and (19) by the virtual strain 
𝛿𝛿𝜺𝜺 and displacement vector 𝛿𝛿𝒖𝒖 respectively. Then the system is integrated over the spatial 
domain and the Divergence Theorem is utilized in the right hand side of the second integral 
operation. The variational form that ensues is 

−� 𝛿𝛿𝜺𝜺𝑇𝑇𝐃𝐃𝜺𝜺 dΩ
Ω

+� 𝛿𝛿𝜺𝜺𝑇𝑇𝐃𝐃𝐒𝐒𝒖𝒖 dΩ
Ω

= 0   ∀𝛿𝛿𝜺𝜺 (15) 

� (𝐒𝐒𝛿𝛿𝒖𝒖)𝑇𝑇(𝐃𝐃𝜺𝜺) dΩ
Ω

= � 𝛿𝛿𝒖𝒖𝑇𝑇𝐟𝐟 dΩ
Ω

+ � 𝛿𝛿𝒖𝒖𝑇𝑇𝒕̅𝒕 𝑑𝑑Γ
Γ𝑡𝑡

   ∀𝛿𝛿𝒖𝒖 (16) 

The variational form of the problem is to find the solutions 𝒖𝒖 and 𝜺𝜺 that fulfill the system of 
Eqs. (20) and (21) and that comply with the boundary condition 𝒖𝒖 = 𝟎𝟎 on Γ𝑢𝑢, for the arbitrary 
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virtual displacements 𝛿𝛿𝒖𝒖, which becomes null on Γ𝑢𝑢, and the arbitrary virtual strains 𝛿𝛿𝜺𝜺. This 
variational problem is symmetric. 

To obtain the discrete form of the mixed problem the spatial domain Ω is discretized into 
nonoverlapping FE Ω𝑒𝑒, so that Ω =∪ Ω𝑒𝑒. The displacement 𝒖𝒖 and the strain 𝜺𝜺 are replaced with 
the FE discrete approximations 𝒖𝒖� and 𝜺𝜺� defined element-wise as 

𝒖𝒖 ≅ 𝒖𝒖� = 𝑵𝑵𝑢𝑢𝑼𝑼 (17) 

𝜺𝜺 ≅ 𝜺𝜺� = 𝑵𝑵𝜀𝜀𝑬𝑬 (18) 

where 𝑼𝑼 and 𝑬𝑬 are vectors incorporating the values of the displacements and the strains at the 
nodes of the finite element mesh. 𝑵𝑵𝑢𝑢 and 𝑵𝑵𝜀𝜀 are the matrices incorporating the interpolation 
functions adopted in the FE approximation. 

Using equal interpolation functions for 𝑵𝑵𝑢𝑢 and 𝑵𝑵𝜀𝜀 does not conform with the Inf-Sup condition 
[39, 40, 41]. In this case a stabilization method becomes necessary to ensure the solvability, 
uniqueness and stability of the discrete mixed problem. The basis of the stabilization procedure 
is the modification of the discrete variational form using the Orthogonal Subscales Method, 
introduced within the framework of the Variational Multiscale Stabilization methods and 
adopted herein [42]. 

The stabilization strategy is solely to change the approximation of the discrete strain in Eq. (23) 
by the following discrete field 

𝜺𝜺 ≅ 𝜺𝜺� = 𝑵𝑵𝜀𝜀𝑬𝑬 + 𝜏𝜏𝜀𝜀(𝑩𝑩𝑢𝑢𝑼𝑼− 𝑵𝑵𝜀𝜀𝑬𝑬) = (1 − 𝜏𝜏𝜀𝜀)𝑵𝑵𝜀𝜀𝑬𝑬 + 𝜏𝜏𝜀𝜀𝑩𝑩𝑢𝑢𝑼𝑼 (19) 

where 𝜏𝜏𝜀𝜀 is a stabilization parameter with value 0 ≤ 𝜏𝜏𝜀𝜀 ≤ 1. Note that for 𝜏𝜏𝜀𝜀 = 1, the strain 
interpolation of the standard irreducible formulation is regained: 

𝜺𝜺 ≅ 𝜺𝜺� = 𝑩𝑩𝑢𝑢𝑼𝑼 (20) 

where 𝑩𝑩𝑢𝑢 is the discrete strain-displacement matrix defined as 𝑩𝑩𝑢𝑢 = 𝐒𝐒𝑵𝑵𝑢𝑢. 

The corresponding algebraic system of equations reads: 

�
−𝑴𝑴𝝉𝝉 𝑮𝑮𝝉𝝉
𝑮𝑮𝝉𝝉𝑇𝑇 𝑲𝑲𝝉𝝉

� �𝑬𝑬𝑼𝑼� = �𝟎𝟎𝑭𝑭� (21) 

where [𝑬𝑬 𝑼𝑼]𝑇𝑇 is the array of nodal values of strains and displacements, and 𝑴𝑴𝝉𝝉 = (1 − 𝜏𝜏𝜀𝜀)𝑴𝑴, 
𝑮𝑮𝝉𝝉 = (1 − 𝜏𝜏𝜀𝜀)𝑮𝑮 and 𝑲𝑲𝝉𝝉 = 𝜏𝜏𝜀𝜀𝑲𝑲. 𝑴𝑴 is a mass like projection matrix, 𝑮𝑮 is the discrete gradient 
matrix, 𝑲𝑲 is a stiffness like matrix and 𝑭𝑭 is the vector of external nodal forces. 

𝑴𝑴 = � 𝑵𝑵𝜺𝜺
𝑻𝑻𝐃𝐃𝑵𝑵𝜺𝜺 dΩ

Ω
 (22) 

𝑮𝑮 = � 𝑵𝑵𝜺𝜺
𝑻𝑻𝐃𝐃𝑩𝑩𝒖𝒖 dΩ

Ω
 (23) 

𝑲𝑲 = � 𝑩𝑩𝑢𝑢
𝑇𝑇𝐃𝐃𝑩𝑩𝑢𝑢 dΩ

Ω
  (24) 

𝑭𝑭 = � 𝑵𝑵𝒖𝒖
𝑻𝑻𝒇𝒇 dΩ

Ω
+ � 𝑵𝑵𝒖𝒖

𝑻𝑻𝒕̅𝒕 dΓ
Γt

 (25) 
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 Numerical analysis of notched and unnotched concrete beams 5.
 

In this section the experimental campaigns reported in references [43, 44, 45] are numerically 
investigated. In these laboratory experiments multiple series of geometrically similar notched 
and unnotched beams of varying sizes are tested. The objective of this section is to show the 
capacity of the proposed model in accurately reproducing the size effect phenomenon in quasi-
brittle materials in mode I and mixed mode I and II fracture.  

The simulations are conducted with an enhanced version of the finite element code COMET 
[46]. Pre- and post-processing are realized with GID [47], developed at CIMNE (International 
Center for Numerical Methods in Engineering). At each load step increment convergence is 
attained when the ratio between the norm of residual forces and the norm of total external forces 
is lower than 10-3 %. In all the simulations shown in this work, a stabilization parameter 
𝜏𝜏𝜀𝜀 = 0.1 is used. 
 

5.1. Analysis of the Grégoire tests: mode I fracture 
 

In this section, the numerical simulation of the tests of the Grégoire concrete beams is 
presented. The experiments are reported in [43], which also computed numerical simulations 
with a non-local model. Other numerical results are also reported in reference [25], where a 
phase-field model is employed, in [48], where interface elements are used, in [49], where the 
beam-particle approach is applied, in [50], where the discrete element method is considered and 
in [51], where a gradient damage model is adopted. 

Three-point bending tests of notched and unnotched beams were carried out. The experiments 
were performed for geometrically similar beams of varying depths 𝐷𝐷 = 400 mm, 200 mm, 100 
mm and 50 mm while the span-to-depth ratio was kept constant to 2.5. Several series of beams 
were tested, with different notch configurations. Specifically, beams with notch-to-depth ratios 
λ of 0.5 (half-notched), 0.2 (fifth-notched) and 0 (unnotched) were considered. All the beams 
had the same constant thickness of 50 mm for all the sizes. The details of the geometry of the 
beams are shown in Figure 3. The material parameters employed in the present simulations are 
given in Table 1. They have been calibrated by reverse fitting, and they are within a 10% 
variation to the values recorded from the experimental tests and the ones used in the 
corresponding reported numerical simulations in [25]. A vertical load is applied at the midpoint 
of the beams. The analyses are performed under CMOD (crack mouth opening displacement) 
control.  

The case of notch-to-depth ratio of 0.5 is solved under the plane stress hypothesis using a 
structured mesh. Quadrilateral elements of a size of 1.25·10-2𝐷𝐷 are employed, resulting in a total 
of 22440 elements. The notch width is set equal to the width of one finite element, as shown in 
Figure 4. Note that this is the maximum mesh size fit to model the evolution of the fracture with 
the crack band approach. For the other notch configurations, the same FE size is fixed and 
similar meshes of 22464 and 22480 quadrilateral elements ensue. 

Figure 5 shows the force-CMOD curves obtained. It can be seen how the peak load is very 
similar to the experimental results of [43] for all the sizes of the three series (the half-notched, 
fifth notched and unnotched beams). In addition, the computed post-peak softening behavior is 
also very close to the experimental envelopes in all the cases. The overall size effect 
phenomenon observed in the experiments is well captured by the model using the same material 
properties in all the simulations. In addition, the same set of material properties model 
reproduce well the behavior of the three series of beams with different notch-to-depth ratios. 
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Figure 3. Geometry of the Grégoire experimental tests 

 

Young’s Modulus 37.0·109 Pa 
Poisson’s Ratio 0.2 
Tensile Strength 3.5·106 Pa 

Tensile Fracture Energy 90 J/m2 
Irwin’s material length 0.2718 m 

Table 1. Material parameters of the Grégoire tests 

 

Figure 4. Detail of the mesh used for the Grégoire tests around the tip of the notch 
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Figure 5. Force-CMOD curves of the Grégoire Tests for (a) the half-notched beams, (b) the fifth-notched 

beams and (c) the unnotched beams 

 

(a) 

(b) 

(c) 
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Figure 6. Damage contours of the Grégoire Tests in the 200 mm depth beams for (a) the half-notched case,    

(b) the fifth-notched case and (c) the unnotched case 

Figure 6 shows the computed crack trajectories for the three different notch configurations of 
the beams with a depth of 200 mm. In all the beam sizes considered, the computed crack 
trajectory is a straight vertical line starting from the tip of the notch at the midpoint of the beam. 
For the unnotched series, an area of low value damage develops at the bottom midpoint of the 
beam prior to the strain localization. 
 

5.2. Analysis of the Hoover tests: mode I fracture 
 

In this second example, the numerical simulation of the beams of the Hoover experiments is 
considered. The tests are described in reference [44] and were repeated in reference [52]. Other 
numerical simulations of the tests can be found in references [25, 53, 54, 55, 56]. To perform 
their computations, reference [25] used a phase-field model, references [53] and [54] considered 
nonlocal models, reference [55] employed a cohesive crack model and reference [56] compared 
the performance between a nonlocal model and the XFEM approach. 
 

 
Figure 7. Geometry of the Hoover experimental tests 

 

 

 

 

 
 

(a) (b) (c) 
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Young’s Modulus 41.0·109 Pa 
Poisson’s Ratio 0.17 
Tensile Strength 4.1·106 Pa 

Tensile Fracture Energy 72.5 J/m2 
Irwin’s material length 0.1768 m 

Table 2. Material parameters of the Hoover tests 

In the Hoover tests geometrically similar beams of varying sizes were subjected to three-point 
bending. The depths 𝐷𝐷 of the tested units are 40 mm, 93 mm, 215 mm and 500 mm while the 
span-to-depth ratio was kept constant to 2.176. Five different notch-to-depth ratios λ were 
introduced: 0.3, 0.15, 0.075, 0.025 and 0.0 (unnotched). A constant thickness of 40 mm was 
kept for all the beam sizes. Details of the beam geometry are displayed in Figure 7. The beams 
are vertically loaded at the top midpoint. The simulations are done under CMOD control. Table 
2 shows the material properties used for the Hoover tests. They are the same as the ones used 
for the numerical simulations reported in [25] and very close to the values recorded in the 
experiments. 
 

 

 

Figure 8. Detail of the mesh used for the Hoover tests around the tip of the notch 

All the simulations are solved under the plane stress hypothesis using very similar structured 
meshes of 23970, 23985, 24092, 23898 and 23900 quadrilateral elements, depending on the 
notch configuration. The FE size is 10-2𝐷𝐷, and the notch width is equal to the size of the 
element. In Figure 8, the detail of the mesh around the tip of the notch for the notch-to-depth 
ratio case of 0.3 is shown.  
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Figure 9. Force-CMOD curves of the Hoover Tests for notch to depth ratios of (a) 0.3, (b) 0.15 and (c) 0.075 

 

(a) 

(b) 

(c) 
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Figure 10. Force-CMOD curves of the Hoover Tests for notch to depth ratios of (d) 0.025 and (e) 0.0 

(unnotched case) 

Figure 9 and Figure 10 display the obtained force-CMOD curves. It is shown how the computed 
peak loads are inside the experimental range reported in [44] for all the sizes and all the notch 
configurations. Furthermore, the calculated post-peak softening behavior is also inside the 
experimental envelopes in practically all the situations. Again, the computational model is able 
to reproduce the size effect behavior observed in the experiments using the same set of material 
properties for all the sizes and beams with different notch-to-depth ratios.  

Figure 11 depicts the computed damage contours of the 40 mm depth beams for the different 
notch-to-depth ratios considered in the tests. The computed track trajectories form a straight 
vertical line for all the beam sizes. Cracks initiate at the tip of the notch in the notched 
specimens. Like in the Grégoire tests, an area of low value of damage develops at the bottom 
midpoint of the unnotched specimens prior to the development of the vertical crack. 

(d) 

(e) 
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Figure 11. Damage contours of the Hoover Tests in the 40 mm depth beams for notch-to-depth ratios of (a) 0.3, 

(b) 0.15, (c) 0.075 and (d) 0.0 (unnotched case) 
 

5.3. Analysis of the Garcia-Alvarez tests: mixed-mode fracture 
 

In this section, the three-point bending tests performed by [45] are reproduced. In this case, an 
eccentricity of the notch was introduced in the beams, so that they are subjected to mixed-mode 
fracture. In [45] the experiments are also computationally modelled using interface elements. 
Other simulations of the results are reported in reference [25], where a phase-field approach is 
used. 

 
Figure 12. Geometry of the mixed-mode fractured beams 

 
 

(a) (b) 

(c) (d) 
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Young’s Modulus 33.8·109 Pa 
Poisson’s Ratio 0.2 
Tensile Strength 3.5·106 Pa 

Tensile Fracture Energy 80 J/m2 
Irwin’s material length 0.2207 m 

Table 3. Material parameters for normal concrete strength in the mixed-mode fractured beams 
 

Young’s Modulus 36.8·109 Pa 
Poisson’s Ratio 0.2 
Tensile Strength 6.0·106 Pa 

Tensile Fracture Energy 120 J/m2 
Irwin’s material length 0.1227 m 

Table 4. Material parameters for high concrete strength in the mixed-mode fractured beams 
 

 

Figure 13. Detail of the mesh used for Garcia-Alvarez the mixed-mode fractured beams around the tip of the 
notch 

Geometrically similar beams of depths 𝐷𝐷 equal to 80 mm, 160 mm and 320 mm were tested 
while the span-to-depth ratio was kept constant to 2.5. Three different series were considered, 
where different notch eccentricities 𝜇𝜇𝜇𝜇 of 0.625𝐷𝐷, 0.3125𝐷𝐷 and 0.0𝐷𝐷 were introduced. The 
notch-to-depth ratio λ is 0.25 in all beams. The thickness of all the beams is 50 mm. The details 
of the geometry of the beams are shown in Figure 12. The material properties used in the 
present work are shown in Table 3. They are identical to the ones reported in [45] as well as the 
ones used in the corresponding numerical simulations in [25]. A vertical force is applied at the 
top midpoint of all the beams. The numerical simulations are performed under CMOD control. 

In addition, a supplementary series of experiments is reported in [45], where high strength 
concrete was employed, instead of normal strength concrete. The beam depths were again 80 
mm, 160 mm and 320 mm. In this case, no eccentricity was considered (𝜇𝜇 = 0.0) and the notch-
to-depth ratio λ was 0.275. The material properties used to simulate the high concrete strength 
case, which are again the same as the ones reported in [45], are shown in Table 4. 

All the simulations are solved under the plane stress hypothesis using very similar structured 
meshes of approximately 31000 quadrilateral elements, depending on the notch configuration. 
The size of the finite elements is 10-2·𝐷𝐷 and the width of the notch is set equal to the element 
size. In Figure 13, the detail around the tip of the notch of the mesh used for the case with an 
eccentricity of 0.625𝐷𝐷 is shown. 
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Figure 14. Force-CMOD curves of the mixed-mode fractured beams for the normal concrete strength 

specimens with eccentricities of (a) 0.625𝑫𝑫, (b) 0.3125𝑫𝑫 and (c) 0.0𝑫𝑫 

(a) 

(b) 

(c) 
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Figure 15. Force-CMOD curves of the mixed-mode fractured beams for the high concrete strength specimens 

 

   

  
Figure 16. Damage contours of the mixed-mode fractured beams in the 320 mm depth case for the normal 
concrete strength specimens with eccentricities (a) 0.625D, (b) 0.3125D and (c) 0.0D and for (d) the high 

concrete strength specimens  

Figure 14 and Figure 15 show the force-CMOD curves obtained for the normal and high 
concrete specimens. Once more it can be seen that the results in terms of peak loads and post-
peak softening curves are very similar to the experiments in all the cases. The agreement with 
the limited data documented from the tests is notable. The same set of material properties 
produce very reasonable simulations of the force-CMOD curves when compared with the 
narrow experimental range provided. 

(a) (b) 

(c) (d) 
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Figure 16 depicts the damage contours computed in the 320 mm depth beams for the different 
eccentricities contemplated in the tests for normal and high strength concretes. The cases with 
no eccentricity produce a vertical straight line for all the sizes. In the specimens with 
eccentricity the crack trajectories start at the tip of the notch and deviate towards the center of 
the beam where the vertical load is applied.  
 

 

 

 
Figure 17. Computed crack paths compared to the experimental results of the mixed-mode fractured beams 

with a notch eccentricity of 0.625D for depths (a) 320 mm, (b) 160 mm and (c) 80 mm 

The computed crack trajectories of the beams with eccentricities 0.625𝐷𝐷 and 0.3125𝐷𝐷 are 
compared in detail for all the sizes with the experimental results in Figure 17 and Figure 18, 
respectively. It can be seen that the computed crack paths show very good agreement with the 
test results. In all the cases except the first one the crack is inside the experimental range. The 
overall behavior of the model is considered very satisfactory given the limited data of the 

(a) 

(b) 

(c) 
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experiments provided and the simplicity of the material model considered, an isotropic damage 
model. The Drucker-Prager criterion is more suitable for mixed-mode cracking, as shown in 
reference [30]. However, for the numerical simulations of these experiments, the Rankine 
damage model produces satisfactory results in terms of crack trajectories and force-
displacement curves when compared to the test results and is able to properly capture the 
observed size effect phenomenon. 
 

 

 
Figure 18. Computed crack paths compared to the experimental results of the mixed-mode fractured beams 

with a notch eccentricity of 0.3125D for depths (a) 320 mm, (b) 160 mm and (c) 80 mm 

 

 

 

(a) 

(b) 

(c) 
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 Mesh dependence study 6.
 

In this section the performance of the mixed FE formulation is assessed. The sensitivity of the 
computed results with regard to the mesh used is analyzed. First, a comparison between 2D and 
3D computations is considered. Then, solutions obtained with different mesh sizes and 
orientations are also contrasted. At the end of this section, a mesh independence study is also 
carried out comparing with standard irreducible linear and quadratic FE.  
 

6.1. 2D vs 3D simulations 
 

In this section, the computed results obtained in 2D for the mixed-mode fractured beams in 
Section 5.3 are compared with corresponding 3D simulations. Specifically, the series with a 
notch eccentricity of 0.625𝐷𝐷 is taken into account for this study. The objective of this section is 
to show the capacity of the proposed model to accurately simulate the experiments in 3D and, 
reciprocally, to assess the plane stress hypothesis commonly used in beam analysis. The 
material properties of the simulation are the same as those used in 2D, shown in Table 3. The 
simulations of this section are performed with a mesh of 18475 hexahedral elements. The size 
of the FEs in the mesh used is 10-2𝐷𝐷 in the central part where the crack forms and of 3.125·10-

2𝐷𝐷 in the rest of the beam. The notch width is also equal to 10-2𝐷𝐷. 

 
Figure 19. Force-CMOD curves of the mixed-mode fractured beams for the specimens with eccentricities of 

0.625D, in 2D and 3D 

In the computed force-CMOD curves shown in Figure 19 the 2D and 3D results are almost 
overlapping and very close to the experimental range for all the sizes. The 2D numerical 
simulations produce a slightly larger peak load than in 3D. Force-displacement curves computed 
in 2D under the plane stress hypothesis are typically an upper bound to 3D results. The small 
difference is due to the disregardance of the out-of-plane stress components in the 2D 
simulation. In addition, the computed crack paths displayed in Figure 20 also show almost 
identical results and with good agreement with the test data. The crack surfaces obtained in the 
3D analyses are depicted in Figure 21, showing the capacity of the model to accurately compute 
the 3D fracture surfaces that occur under mixed-mode fracture. This confirms that the plane 
stress hypothesis used to compute the results in 2D is appropriate for simulating the beam 
experiments. 
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Figure 20. Computed crack paths in 2D and 3D of the mixed-mode fractured beams with a notch eccentricity 

of 0.625D for depths (a) 320 mm, (b) 160 mm and (c) 80 mm 

  

(a) 

(b) 

(c) 
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6.2. Mesh independence study with mixed FE 
 

The objective of the present section is to assess the capability of the mixed FE formulation of 
obtaining mesh-objective results with regard FE size and orientation. For this, the computation 
of the specimen with depth 𝐷𝐷 of 80 mm and a notch eccentricity of 0.3125𝐷𝐷 of the mixed mode 
fracture tests reported in Section 5.3 is considered. Four different meshes are used for this study: 
(1) a 31175 quadrilateral element structured mesh already used in Section 5.3, (2) a 64700 
quadrilateral element structured mesh, (3) a 36714 triangular element unstructured mesh and (4) 
a 126530 triangular element unstructured mesh. Meshes (1) and (3) have a FE size 
corresponding to 10-2𝐷𝐷 in the center of the beam while in (2) and (4) the FE size is equal to 
5·10-3𝐷𝐷 in the center of the beam. In all the cases, the width of the notch is equivalent to 10-2𝐷𝐷. 
Different element orientations have been chosen for the triangular and quadrilateral meshes to 
test the mesh size and bias dependence of the computed results, as it can be seen in Figure 22.  

Figure 21. Computed crack surfaces of the mixed-mode fractured beams with eccentricity 0.625D 
for the three sizes of the series 



26 
 

 

  
Figure 22. Detail of the mesh around the notch tip used for the mixed-mode fractured beams with                   

(a) 31175 quadrilateral elements, (b) 36714 triangular elements, (c) 64700 quadrilateral elements and             
(d) 126530 triangular elements 

 

  
Figure 23. Force-CMOD curves of the mixed-mode fractured beams for the 80 mm depth specimen with 

0.3125D eccentricity for the different meshes considered 

(a) (b) 

(c) (d) 
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Figure 24. Computed crack paths of the mixed-mode fractured beams for the 80 mm depth specimen with 

0.3125D eccentricity for the different meshes considered 

Figure 23 shows the force-CMOD results obtained with the 4 different meshes. It can be seen 
that the results for all the meshes are almost overlapping and very close to the experimental 
result. The computed crack paths for the 4 meshes are depicted in Figure 24. They are all of 
them almost identical, the difference between each other being of the order of the FE size ℎ. 

Therefore, it can be concluded that: (1) the computed results are converged in terms of mesh 
size, (2) the mixed finite element formulation used is practically mesh-independent and does not 
show any spurious mesh-orientation bias. 
 

6.3. Standard vs Mixed FE 
 

In this section a comparison of the performance of standard and mixed FE is carried out. For 
this, the numerical simulation of the specimen with depth 𝐷𝐷 of 80 mm and a notch eccentricity 
of 0.3125𝐷𝐷 of the mixed mode fracture tests of Section 5.3 is considered again. The 
computations using standard and mixed FE are compared for two different meshes: (1) the 
31175 quadrilateral element mesh shown in Figure 22a and (2) the 36714 triangular element 
mesh depicted in Figure 22b.  

In Figure 25 it can be seen that the force-CMOD computations for the standard and mixed FE 
are very close. This is significant because, as shown in Figure 26, the computed crack 
trajectories of the standard FE are completely off-mark, demonstrating the spurious mesh bias 
of this element while the paths obtained with mixed FE are inside the experimental range.  

Finally, 3D simulations have been performed to further illustrate the spurious mesh dependence 
of standard FE. For this, considering the same specimen, an 18475 hexahedral element mesh has 
been used to assess the performance of standard tri-linear elements, standard tri-quadratic and 
mixed tri-linear FE. The size of the mesh is 10-2𝐷𝐷 in the central part where the crack forms and 
of 3.125·10-2𝐷𝐷 in the rest of the beam. The notch width is also equal to 10-2𝐷𝐷. 

Figure 27 depicts the computed crack paths of the three simulations. On the one hand, it can be 
seen again how the linear standard formulation produces severely mesh dependent results. The 
results obtained with quadratic standard elements are closer to experimental range than the ones 
obtained with linear standard FE, but it is clearly visible that they suffer from spurious mesh 
dependence. On the other hand, the results computed with mixed FE are inside the experimental 
range. This can be seen in detail in Figure 28, where the computed 3D crack surfaces with the 
three elements are shown.  
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Figure 25. Force-CMOD curves of the mixed-mode fractured beams for the 80 mm depth specimen with 

0.3125D eccentricity for standard and mixed FE 

 
Figure 26. Computed crack paths of the mixed-mode fractured beams for the 80 mm depth specimen with 

0.3125D eccentricity for standard and mixed FE 

 

 
Figure 27. Computed crack paths of the mixed-mode fractured beams for the 80 mm depth specimen with 

0.3125D eccentricity in 3D for standard and mixed FE 
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Figure 28. Computed crack surfaces of the mixed-mode fractured beams for the 80 mm depth specimen 
with 0.3125D eccentricity with (a) linear standard FE, (b) quadratic standard FE and (c) linear mixed FE 

(a) 

(b) 

(c) 
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 Influence of the statistical variability of the mechanical properties 7.
 

The objective of this section is to analyse the influence of the statistical size effect compared to 
the impact that the release of stored energy has on the size effect phenomenon. It has been stated 
by Bazant and Planas in reference [1] that 

“Statistical size effect … is caused by the randomness of material strength and has 
traditionally been believed to explain most size effects in concrete structures. … 
However, … on closer scrutiny, this explanation is found to be inapplicable to most 
types of failures of reinforced concrete structures. … Concrete structures fail only 
after a large stable growth of cracking zones or fractures. The stable crack growth 
causes large stress redistributions and a release of stored energy, which, in turn, 
causes a much stronger size effect, dominating over any possible statistical size 
effect. At the same time, the mechanics of failure restricts the possible locations of 
the decisive crack growth at the moment of failure to a very small zone. This causes 
the random strength values outside this zone to become irrelevant, thus 
suppressing the statistical size effect. “ 

In the analysis of this section the beams of the Hoover series corresponding to the notch-to-
depth ratio of 0.075 are computed considering the statistical variability of the mechanical 
properties of the material that was reported in [44, 52]. In the present study, only the variability 
of the Young modulus 𝐸𝐸, the tensile strength 𝑓𝑓𝑡𝑡 and the fracture energy 𝐺𝐺𝑓𝑓 are considered, as 
they are deemed to be the most influential in the structural response. 

CV Young’s Modulus 5% 
CV Tensile Strength 3.5% 

CV Tensile Fracture Energy 17% 

Table 5. Coefficients of variation of the material parameters adopted for the Hoover tests 

An accurate study of the relative influence of the deterministic and stochastic sources of size 
effect in quasi-brittle materials would necessarily include a certain number of numerical 
simulations where different material properties are randomly assigned to each finite element 
according to a probability density function and a spatial autocorrelation function.  

R Young’s Modulus 
(x1010 Pa) 

Tensile Strength 
(x106 Pa) 

Tensile Fracture 
Energy (J/m2) 

1 4.1647 3.9172 68.219 
2 4.2129 4.3060 77.698 
3 3.8494 4.3789 88.638 
4 4.3171 4.0705 75.954 
5 4.1522 4.0352 84.161 
6 3.9682 4.2678 56.885 
7 4.4500 4.1607 82.345 
8 4.0652 4.0529 58.623 
9 3.7394 4.0908 81.015 

Table 6. Sets of random properties generated for the Hoover tests 
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Figure 29. Force-CMOD curves of the Hoover Tests with the random properties generated, notch-to-depth 

ratio 0.075, for depths (a) 500 mm, (b) 215 mm, (c) 93 mm and (d) 40 mm 

(a) 

(b) 

(c) 

(d) 
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This process is here circumvented on the consideration that, even when the variability of the 
material is taken into account with the aforementioned method, for large enough specimens of 
quasi-brittle materials the crack is going to localize through a band of elements which represents 
a small percentage of the total number of elements. The behavior of the whole specimen is 
going to be determined by the material parameters of the very few elements located at the crack 
path. When considering as well the spatial correlation of the material properties, an effective 
and simpler way to tackle the issue is to assign to the whole body the same equivalent set of 
random parameters generated according to a certain probability density function. 

Of course it is necessary to keep in mind the limitations of the present simplified approach to 
statistical size effect. On the one hand, in reference [57] it is shown that for small enough 
specimens, where the previous considerations are no longer acceptable, the influence of 
statistical size effect increases significantly. To consider that case, performing the simulations 
with varying properties in each element is mandatory. On the other hand, reference [33] states 
that for very large unnotched structures, where a very brittle failure takes place as soon as the 
fracture process starts, statistical size effect also becomes significant. However, for the sizes 
used in the Hoover tests the present simplified approach is deemed accurate enough. 

For the computations of this section, it is assumed that the three material properties considered 
follow a Gaussian distribution. The mean values of the three properties are taken as the ones 
already used in the simulations of the present work in Table 2. The coefficients of variation 
adopted in this work (displayed in Table 5) are the ones reported in [44, 52]. With this data, 9 
different sets of properties have been randomly generated, noted R1 to R9 and are shown in 
Table 6. These properties are used to simulate the four sizes of the Hoover beam series with a 
notch-to-depth ratio of 0.075.  

The computed force-CMOD curves are shown in Figure 29. It can be seen how all the different 
randomly generated sets of properties produce results with good agreement with the 
experiments for all the sizes. In all the cases the values of the peak loads are inside the 
experimental range. The post-peak softening numerical result is very similar to the behavior 
observed in the tests. The ranges of numerical results generated overlap quite satisfactorily with 
the experimental envelopes. In this case the impact of statistical size effect is small and the size 
effect phenomenon can be sufficiently reproduced considering only the influence of the release 
of stored energy.  
 

 Size effect law predictions 8.
 

It has been shown so far that the proposed model based on the mixed finite element formulation 
together with the proper constitutive law is able to reproduce with accuracy the size effect 
phenomena observed in experiments. The objective of this section is to perform a 
comprehensive analysis of the size effect phenomenon. For this, numerical simulations have 
been carried out for an extended range of sizes in notched and unnotched beams. The aptness of 
the model in reproducing the behavior theoretically expected is assessed in detail. 

The Grégoire tests are considered for computing predictions of the behavior of notched and 
unnotched beams over a large interval of sizes. Specifically, the Grégoire series with a notch-to-
depth ratio of 0.2 and 0.0 are contemplated. When taking the case with depth 400 mm as 
reference, computations with geometries scaled up to 102 times (and even more for the notched 
specimen) and 10-4 times smaller have been performed. In all the cases the same material 
properties from Table 1 are used and the thickness of the beam is kept constant to 50 mm.  

Given the extensive range of sizes considered, there are several obvious factors that may alter 
the outcome of the extremely large and small tests that are not taken into consideration in the 
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simulations performed in this section. In particular, the impact of the other sources of size effect 
might increase. Considering the practical impossibility of performing the really big and really 
small scale tests in laboratory, the corresponding simulations presented are to be seen as a study 
of the limit cases for size effect. 

In this section, the nominal strength 𝜎𝜎𝑁𝑁𝑢𝑢, or peak nominal stress, is defined as  

𝜎𝜎𝑁𝑁𝑢𝑢 =
𝑃𝑃𝑢𝑢
𝐷𝐷𝐷𝐷

 (26) 

where 𝑃𝑃𝑢𝑢 is the peak load, 𝐷𝐷 is the depth of the beam and 𝑏𝑏 is the thickness.  
 

Unnotched beam size effect predictions 
 

In Figure 30, the damage and maximum principal strain contour fills computed for a few cases 
are shown to demonstrate the change in the failure mode that happens when the size of the 
unnotched beam varies. The same mesh as the one used in the simulations of Section 5.1 is 
employed for all the scales. It can be seen that the mechanics of collapse are different for small 
and large size beams. When the beam is large enough, the structure fails as soon as the damage 
criterion is reached at the bottom midpoint of the beam and a vertical crack suddenly appears. 
When the size is small enough, damage develops over an extensive area before a collapse 
mechanism is formed and failure is due to the development in the center of the beam of a perfect 
hinge. As size increases, the observed mechanism tends from one limit case to the other. This is 
the source for structural size effect.  

As it was observed in previous sections, in unnotched beams of medium sizes an area of low 
value damage develops at the bottom midsection of the beam prior to the strain localization. 
Note that this area is nonexistent in the larger beams and becomes bigger as size decreases. Note 
also that even though the damaged area can become large when size decreases, strain 
localization in a narrow band is properly taking place in the computed strain field for all the 
sizes. As the energy dissipated in the plastic limit is proportional to the inelastic strain 
developed, the correct strain localization pattern shows that energy is correctly dissipated even 
if the damaged zone is more extensive.  

The peak load of both the small and large limit cases can be readily computed. Statics show that 
the maximum bending moment under three-point bending occurs at the midsection of the beam 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 =
1
4
𝑃𝑃𝑢𝑢 2.5𝐷𝐷 =

5
8
𝑃𝑃𝑢𝑢𝐷𝐷 (27) 

In the small size limit, the peak load can be derived from the limit analysis of the beam. The 
structure fails when a hinge develops at the midsection of the beam. As only tensile damage is 
considered, the maximum bending moment that the cross section can sustain is attained when 
the entire section of the beam carries the tensile maximum stress 𝑓𝑓𝑡𝑡. With this stress distribution, 
the neutral axis is located at the top of the mid cross section and the bending moment of the 
beam at the midsection is 

𝑀𝑀𝑢𝑢 =
1
2
𝐷𝐷2𝑏𝑏𝑓𝑓𝑡𝑡 (28) 

Therefore, equating (32)and (33), the peak load 𝑃𝑃𝑢𝑢 of the beam for the small limit case is 

𝑃𝑃𝑢𝑢 =
4
5
𝐷𝐷𝐷𝐷𝑓𝑓𝑡𝑡 (29) 

And the corresponding nominal strength 𝜎𝜎𝑁𝑁𝑢𝑢 is  
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𝜎𝜎𝑁𝑁𝑢𝑢 =
𝑃𝑃𝑢𝑢
𝐷𝐷𝐷𝐷

=
4
5
𝑓𝑓𝑡𝑡 (30) 

Notice that in the small limit case the peak load 𝑃𝑃𝑢𝑢 is linear with respect the size 𝐷𝐷 and the 
nominal strength 𝜎𝜎𝑁𝑁𝑢𝑢 is constant. 

 

 

 

 

  

  

  
Figure 30. Variation of the (left) damage and (right) maximum principal strain contours of the unnotched 

beam for scales (a) 10, (b) 1, (c) 0,5, (d) 0.25, (e) 0.05, (f) 0.01 and (g) 10-4 

In the large size limit a perfectly brittle failure occurs and a linear elastic analysis of the beam 
can be considered. Considering the Euler-Bernoulli beam theory, a bending moment 𝑀𝑀 acting 
on a   𝐷𝐷 x 𝑏𝑏 rectangular section produces a maximum tensile stress located at the bottom equal 
to 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 6
𝑀𝑀
𝐷𝐷2𝑏𝑏

 (31) 

Therefore, for 𝑀𝑀 = 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 in Eq. (32) 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 3.75
𝑃𝑃
𝐷𝐷𝐷𝐷

 (32) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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As structural failure occurs when 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑡𝑡, the peak load 𝑃𝑃𝑢𝑢 of the beam in the large limit case 
is 

𝑃𝑃𝑢𝑢 =
4

15
𝐷𝐷𝐷𝐷𝑓𝑓𝑡𝑡 (33) 

And the corresponding nominal strength 𝜎𝜎𝑁𝑁𝑢𝑢 is  

𝜎𝜎𝑁𝑁𝑢𝑢 =
𝑃𝑃𝑢𝑢
𝐷𝐷𝐷𝐷

=
4

15
𝑓𝑓𝑡𝑡 (34) 

Notice that in the large limit case the peak load 𝑃𝑃𝑢𝑢 is also linear with respect the size 𝐷𝐷 and the 
nominal strength 𝜎𝜎𝑁𝑁𝑢𝑢 is constant. 

Figure 31 shows the predictions of the nominal strength with respect the beam size that are 
obtained with the computational FE model. On the one hand, it can be seen that for small sizes 
the nominal strength tends towards the limit set by limit analysis. On the other hand, for big 
sizes the nominal strength reaches the value corresponding to perfectly brittle failure. Note that 
the large scale limit is not tending exactly to the limit predicted by the linear elastic analysis. 
This is because the beam has a span-to-depth ratio of 2.5, which is too small for the Euler-
Bernoulli theory to be fully valid. Nonetheless, the large scale limit predicted with the Euler-
Bernoulli assumptions is a good approximation (7% off).  

In Figure 32 the computed ultimate load vs beam depth results are shown. As noted in the 
introduction, the nominal strength 𝜎𝜎𝑁𝑁𝑢𝑢 is in fact an indirect way of describing the peak load 𝑃𝑃𝑢𝑢 
reached by the structure. The phenomenon is described in a much clearer way using the nominal 
strength. 

 
Figure 31. Computed predictions of the nominal strength vs beam depth for the unnotched beam 
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Figure 32. Computed predictions of the peak load vs beam depth for the unnotched beam 

 

Notched beam size effect predictions 
 

Figure 33 depicts damage and maximum principal strain contour fills obtained for several sizes 
of the notched beam. The same mesh as the one used in the simulations of Section 5.1, shown in 
Figure 34a, is employed for scales lower or equal than 20. For larger cases a finer mesh, detailed 
in Figure 34b, is used, where the FE size is 1.25·10-4𝐷𝐷 near the crack tip, resulting in a 121026 
element mesh. 

It can be seen that the extension of the area affected by damage grows as the size diminishes. It 
can be noticed once more that even though the damaged area becomes large for smaller sizes, 
strain localization in a narrow band is properly taking place in the computed strain field. For 
large beams a very brittle failure occurs, caused by a vertical crack starting at the tip of the 
notch. In that situation the structural failure is influenced in a determining way by the stresses 
concentrating around the notch, which need to be computed accurately. For this reason, a mesh 
refinement of the area near the tip of the notch is necessary for the larger cases. For small 
enough scales a perfect hinge is developed in the midsection of the beam, analogously to the 
unnotched case.  

The peak load of the small limit case can be calculated from limit analysis using the same 
method as for the unnotched beam. The structure fails when a hinge develops at the midsection 
of the beam. Considering that the notch has a length of 𝜆𝜆𝜆𝜆, the maximum bending moment at 
the midsection is 

𝑀𝑀𝑢𝑢 =
1
2

(1 − 𝜆𝜆)2𝐷𝐷2𝑏𝑏𝑓𝑓𝑡𝑡 (35) 

Therefore, the peak load 𝑃𝑃𝑢𝑢 of the beam for the small limit case is 

𝑃𝑃𝑢𝑢 =
4
5

(1 − 𝜆𝜆)2𝐷𝐷𝐷𝐷𝑓𝑓𝑡𝑡 (36) 

And the corresponding nominal strength 𝜎𝜎𝑁𝑁𝑢𝑢 is  
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𝜎𝜎𝑁𝑁𝑢𝑢 =
𝑃𝑃𝑢𝑢
𝐷𝐷𝐷𝐷

=
4
5

(1 − 𝜆𝜆)2𝑓𝑓𝑡𝑡 (37) 

Notice that again the peak load 𝑃𝑃𝑢𝑢 is linear with respect the size 𝐷𝐷 and the nominal strength 𝜎𝜎𝑁𝑁𝑢𝑢 
is constant. 

The peak load of the large limit case cannot be correctly computed considering the Euler-
Bernoulli beam theory as in the unnotched case because the effect of the stress concentration 
around the notch tip is not taken into account. In situations where stress singularities exist, a 
failure criterion expressed in terms of stress is not adequate. In such cases, an energy failure 
criterion such as the one introduced in LEFM becomes relevant. 

In the LEFM approach the expected relation of the nominal strength for two sizes A and B is 

�𝜎𝜎𝑁𝑁𝑢𝑢�𝐴𝐴
�𝜎𝜎𝑁𝑁𝑢𝑢�𝐵𝐵

= �
𝐷𝐷𝐴𝐴
𝐷𝐷𝐵𝐵
�
−12

 (38) 

And the predicted relation of the corresponding peak loads is 

(𝑃𝑃𝑢𝑢)𝐴𝐴
(𝑃𝑃𝑢𝑢)𝐵𝐵

= �
𝐷𝐷𝐴𝐴
𝐷𝐷𝐵𝐵
�
1
2
 (39) 

In Figure 35 the computed predictions of the nominal strength with respect the beam size for the 
notched case are depicted. For small sizes the nominal strength reaches the limit set by limit 
analysis. It can be seen that for large sizes the nominal strength follows the behavior specified 
by LEFM theory. 

In Figure 36 the computed predictions are shown in terms of peak load vs structural size. Once 
more the size effect phenomenon is revealed in a clearer way with the use of the nominal 
strength. 

The aptness of the predictions computed with the model can be assessed by examining their 
fitting with respect Bazant’s size effect law. To adjust the parameters of Bazant’s law with the 
produced numerical data, a nonlinear least squares fitting procedure is performed. The result is 
shown in Figure 37.  

Three different functions are considered for adjusting the data. First, Bazant’s original law is 
considered 

𝜎𝜎𝑁𝑁𝑢𝑢 = 𝐵𝐵𝑓𝑓𝑡𝑡 �1 + �
𝐷𝐷
𝐷𝐷0
��
−12

 (40) 

The fitted parameters obtained are 𝐵𝐵 = 0.43987 and 𝐷𝐷0 = 0.14895 𝑚𝑚. It can be seen that 
Bazant’s original law does not fit correctly the data for the whole range of depths; in particular, 
it does not fit well the regions corresponding to small and intermediate specimen sizes. This 
issue has already been discussed in reference [1] when considering a large range of sizes. As a 
remedy, Bazant’s general law has been proposed 

𝜎𝜎𝑁𝑁𝑢𝑢 = 𝐵𝐵𝑓𝑓𝑡𝑡 �1 + �
𝐷𝐷
𝐷𝐷0
�
𝑟𝑟
�
− 1
2𝑟𝑟

 (41) 
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Figure 33. Variation of the (left) damage and (right) maximum principal strain contours of the notched beam 

for scales (a) 20, (b) 1, (c) 0,25, (d) 0.125, (e) 0.05, (f) 0.01 and (g) 10-4 

The fitted parameters obtained are 𝐵𝐵 = 0.51165, 𝐷𝐷0 = 0.13819 𝑚𝑚 and 𝑟𝑟 = 0.51318. Note that 
𝐷𝐷0 = 0.5084𝐿𝐿. It can be observed that Bazant’s general law fits much better the computed 
predictions over the whole domain than the original law. The level of adjustment with the 
numerical predictions is notable as the size range considered here is very extensive, spreading 
over more than 6 orders of magnitude. In reference [1] it is already pointed out that parameters 𝑟𝑟 
close to 0.5 fit better data which is extended over a wide range of sizes.  

Finally, let us consider the fitting of the computed predictions with the power law 

𝜎𝜎𝑁𝑁𝑢𝑢 = 𝐴𝐴𝐷𝐷𝑚𝑚 (42) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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Figure 34. Detail of the mesh used for the notched beam size effect predictions around the tip of the notch with 

(a) 22464 quadrilateral elements and (b) 121026 triangular elements 

The fitted parameters are 𝐴𝐴 = 322760.818 and 𝑚𝑚 = −0.25189 and the corresponding curve is 
also shown in Figure 37. It can be clearly seen that the power law fits very poorly the results. 
This clearly shows that, as it is stressed out in references [3, 4, 10], size effect cannot be 
modelled with the power law and that the phenomenon in fact involves a characteristic size 𝐷𝐷0, 
related to the material characteristic length 𝐿𝐿. 

 
Figure 35. Computed predictions of the nominal strength vs beam depth for the notched beam 

 

(a) (b) 

D0
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Figure 36. Computed predictions of the peak load vs beam depth for the notched beam 

 

 
Figure 37. Fitting of the numerical predictions with respect Bazant's size effect law 

The size effect phenomenon also involves a change in the ductility and the post-peak behavior 
of the specimens. Figure 38 shows the nominal stress vs normalized CMOD curve (nominal 
stress being also a measure of force normalized with respect structural size) of the simulations 
performed for the notched beams. It can be seen how the behavior of the beams changes from 
ductile to brittle when size increases. Once properly normalized, the peak load and the energy 
dissipated in the failure process is comparatively smaller in larger structures. The collapse in 
larger specimens happens closer to the peak load while in smaller ones the post-peak curve 
descends much more slowly. It is observed that the nonlinear regime starts before the peak load 

D0
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is attained, particularly for more ductile behavior. Therefore, it is shown that, besides 
considering with accuracy the effect that the phenomenon has on load capacity, the 
computational model is also able of reproducing the ductility changes originated by variations in 
structural size. 

 
Figure 38. Normalized force-CMOD curves for various scales of the notched beam 

 

 Conclusions 9.
 

In this work, the phenomenon of structural size effect is addressed, and experimental evidence, 
theoretical predictions and computational modelling using FEs are assessed against each other. 
Quasi-brittle failure is accurately modelled with a classical local isotropic Rankine damage 
constitutive law. The correct dissipation of fracture energy in the crack, fundamental to 
appropriately consider size effect, is enforced in conjunction with the crack band approach. The 
model is used together with an enhanced accuracy mixed ε/u finite element formulation to 
provide results without spurious mesh bias.  

The simulation of several experimental campaigns, where the phenomenon is investigated in 
mode I and mixed mode I and II, is carried out. The performance of the model in modelling size 
effect is shown in notched and unnotched beams. 

It is observed that: 

• The proposed local isotropic damage constitutive model is fit for the numerical 
simulation of structural size effect.  

• Results documented in several experimental campaigns where the phenomenon is 
carefully studied are accurately reproduced in 2D and 3D. 

• The results obtained with the mixed FE formulation are free from the spurious mesh 
dependency in terms of computed crack trajectory which is typical of standard FEs. 

• The dominant influence of size effect in quasi-brittle materials is the release of stored 
energy as the crack progresses in the structure 

• Bazant’s size effect law is followed with exactitude over a wide range using the 
proposed model. 

From these, it is concluded that the proposed isotropic damage model, used together with the 
mixed finite element formulation, is suitable for reproducing size effect in quasi-brittle materials 
in mode I and mixed mode I and II loading with mesh objectivity and without the need of using 
auxiliary crack tracking techniques. 
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