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Abstract

In this work a novel phenomenological model is proposed to study the
liquid-to-solid phase change of eutectic and hypoeutectic alloy composi-
tions.

The objective is to enhance the prediction capabilities of the solidi�ca-
tion models based on a-priori de�nition of the solid fraction as a function
of the temperature �eld. However, the use of models de�ned at the met-
allurgical level is avoided to minimize the number of material parameters
required. This is of great industrial interest because, on the one hand,
the classical models are not able to predict recalescence and undercooling
phenomena, and, on the other hand, the complexity as well as the ex-
perimental campaign necessary to feed most of the microstructure models
available in the literature make their calibration di¢ cult and very depen-
dent on the chemical composition and the treatment of the melt.

Contrarily, the proposed model allows for an easy calibration by means
of few parameters. These parameters can be easily extracted from the tem-
perature curves recorded at the hot spot of the Quick-Cup test, typically
used in the Di¤erential Thermal Analysis (DTA) for the quality control
of the melt just before pouring.

The accuracy of the numerical results is assessed by matching the
temperature curves obtained via DTA of eutectic and hypoeutectic alloys.
Moreover, the model is validated in more complex casting experiments
where the temperature is measured at di¤erent thermocouple locations
and the metallurgical features such as grain size and nucleation density
are obtained from an exhaustive micrography campaign.

The remarkable agreement with the experimental evidence validates
the predicting capabilities of the proposed model.
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1 Introduction

One of the challenges of today�s casting practice is the quality control of the
manufacturing process and the �nal properties of the casting products. The me-
chanical properties of cast iron strongly depend on the solidi�cation microstruc-
ture as well as the porosity induced by the shrinkage phenomena. The chemical
composition of the alloy, the inoculation treatment of the melt and the overall
cooling conditions are the main process parameters that in�uence the solidi�-
cation process. Complex casting geometries are characterized by a wide range
of cooling rates due to the thickness distribution of the casting components and
complex heat loss mechanisms, leading to wide di¤erences in the �nal metallur-
gical properties at di¤erent points of the casting part. Therefore, an accurate
study of solidi�cation and cooling conditions is essential for the improvement of
the casting process and the metallurgical quality of the parts.
In order to study these phenomena, the numerical simulation of the thermal

process is a consolidated industrial practice thanks to the use of dedicated soft-
ware allowing for the heat transfer analysis of foundry components. The latent
heat released during the solidi�cation is the key point of the phase change trans-
formation. On the one hand, the total amount of latent heat is assumed as a
material property. On the other hand, the heat release mechanism is controlled
by the evolution of the solid fraction during the solidi�cation process.
In the �rst attempts of predicting the solidi�cation phenomena, the solid

fraction has been assumed as an explicit function of the alloy temperature. Sev-
eral methods have been proposed such as the e¤ective speci�c heat method
[36], [21], [40] , the enthalpy method [24], [29], [45] or the temperature recov-
ery method [42], among others. These methods assume an explicit relationship
between the temperature at each point of the melt and the amount of latent
heat released. The solid fraction function can be obtained by Di¤erential Ther-
mal Analysis (DTA) measurements [19], [38], using the Back Di¤usion (BD)
model [9], or adopting analytical laws such as the Lever rule or Scheil rules [44].
All these methods take into account the e¤ects induced by the actual chemical
composition of the alloy but, generally, ignore the in�uence of the local cooling
rates as well as any kinetic phenomena during the solidi�cation. Consequently,
undercooling and recalescence phenomena are typically impossible to be pre-
dicted and pose serious numerical inconveniences when dealing with eutectic
compositions (e.g. isothermal phase-changes).
The numerical simulation of casting processes experienced a signi�cant step

forward by introducing models based on the prediction of the microstructure
evolution. As a �rst approximation, the mesoscale models express the fraction
of solid during the solidi�cation by estimating an average nucleation density and
the corresponding grain growth for each phase. Typically, both the nucleation
density and grain growth are related to kinetic parameters such as the cooling
rates of the melt, the undercooling e¤ects and the speci�c melt treatment such
as the inoculation strategy. Starting from the original works of Old�eld [37]
on the nucleation law for cast-iron, to the models proposed by Stefanescu ([46],
[47], [49]), Rappaz ([40], [51]), Lacaze ([32], [33], [34]), Svensson [52] , Celentano
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([39], [11], [12], [13], [14], [25]), Dardati ([27], [28], [10], [53]), the complexity of
the subjacent microstructure has been incremented progressively.
More sophisticated models, such as the cellular automata technique ([30],

[31], [18] and [35]), describe the solidi�cation phenomena at the microscale level,
combining both deterministic and probabilistic laws in order to study the evolu-
tion of each single grain and the grain-to-grain interaction within a more realistic
description of the microstructure. Using these microstructure models, it is pos-
sible to achieve a realistic visualization of the dendritic phase growing during
the solidi�cation, the interaction with the eutectic nuclei and the in�uence of
the carbon content and its di¤usion.
Both mesoscale and microscale approaches have some drawbacks. On the

one hand, mesoscale models are very much dependent on the actual chemical
composition of the alloy and the technological treatment of the melt, requiring
a tedious calibration process of the sophisticated evolution laws proposed in the
last years. Furthermore, they still rely on coarse approximation of the grain
shape (typically equiaxial grains) and grain interactions, as well as on empirical
nucleation laws. On the other hand, microscale models can produce very ac-
curate predictions but the upscaling process to the macroscale, where the heat
transfer analysis is modelled, and the necessary computational resources, make
their use una¤ordable when facing the study of complex industrial components.
In this paper a di¤erent approach to the solidi�cation problem is proposed.

The main idea consists of assuming a macroscale model, where the solidi�ca-
tion depends on the de�nition of an ad-hoc evolution law for the solid fraction.
Hence, the latent heat release is not written as an explicit function of the local
temperature �eld, but it relies on the time integration of an evolution law for the
solid fraction. This evolution law takes into account the chemical composition
(i.e. the equivalent carbon content) as well as the cooling rate at each point of
the casting. Therefore, the main idea is to characterize the solidi�cation process
to obtain the most realistic temperature evolution without introducing any ex-
plicit relationship with the subjacent microstructure. The phase change model
is kept as simple as possible, regardless of the complexity of the phenomena tak-
ing place at the microscale while capturing their e¤ects at the macroscale. The
alloy composition as well as the melt treatment are accounted by experimental
calibration (e.g. matching the numerical result of the model with the tempera-
ture evolution recorded by a thermocouple at the hot-spot in a Quick-Cup test,
typically used in DTA).
The same idea has been successfully used to study the thermochemical hy-

dration process of concrete ([23], [15]). The parallelism with the metal casting
process is evident: the hydration of concrete is a highly exothermic and ther-
mally activated reaction where the di¤usion of water and the formation of hy-
drates are the dominant mechanisms at the microscale level de�ning the reaction
kinetics. Also in this case, the main objective is to capture the phenomenolog-
ical aspects of the process without explicitly referring to the physical-chemical
phenomena occurring at the microscale level.
In the next Section, a review of the equations used for the heat transfer analy-

sis is presented. The solidi�cation model for the eutectic and the hypoeutectic
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phase-changes is introduced in Sections 3 and 4, respectively. The models are
enhanced by coupling the solidi�cation with the characterization of the thermo-
physical material properties used in the heat transfer analysis. This is achieved
by introducing a mixture rule based on the growth of the di¤erent phases in
the melt. Finally, Section 5 shows the calibration and validation work carried
out. In the casting benchmarks proposed both the chemical composition of the
melt and the thermal module of the components are modi�ed to demonstrate
the prediction accuracy of the proposed model.

2 Heat transfer analysis

Both the solidi�cation and the cooling phases are controlled by the balance of
energy equation ([26]). This governing equation can be stated as:

dH

dT
= �r � q (1)

where dH
dT is the enthalpy rate (per unit of volume) and q is the heat �ux.

The enthalpy H (T; fL) is the state variable de�ned as a function of the
temperature, T , and the liquid fraction, fL. Hence, the enthalpy rate in (1) can
be written as:

dH

dT
(T; fL) =

@H

@T
_T +

@H

@fL
_fL = C

dT

dt
+ L

dfL
dt

(2)

where C = @H
@T is the heat capacity and L = @H

@fL
is the latent heat released

during the phase-change process.
The heat capacity of the material is de�ned as: C = �c, the product of the

material density, �, and the speci�c heat, c.
The heat �ux (per unit of surface) q, is computed as a function of the

temperature gradient through the Fourier�s law as:

q =� krT (3)

where k is the thermal conductivity.
The solution of the thermal problem consists of enforcing the weak form of

the balance of energy equation. This means integrating Eq. (1) over the open
and bounded volume V , closed by the smooth boundaries S = ST [ Sq where
the corresponding boundary conditions are de�ned in terms of either prescribed
temperature (T = �T ) on ST or prescribed heat �ux (�krT �n = �q) through the
surface Sq with external normal n. Suitable initial conditions for the transient
thermal problem are de�ned in terms of initial temperature �eld: T (t = 0) = T0.
The resulting weak (integral) form of the energy balance equation used for

the heat transfer analysis, can be written as ([16], [1], [2], and [3]):R
V

h�
C dT
dt + L

dfL
dt

�
�T
i
dV +

R
V

[krT �r (�T )] dV =W ext
ther 8�T (4)
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where �T are the variations of the temperature �eld (test functions) compatible
with the Dirichlet�s boundary conditions and W ext denotes the external work
of the thermal loads:

W ext (T ) = �
Z
Sq

[(�q + qcond + qconv + qrad) �T ] dS (5)

In Eq. (5), �q represents the prescribed heat �ux (Neumann�s condition) while
qconv and qrad are the heat �uxes by convection and by radiation, responsible
of the heat loss through the body surfaces in contact with the environment.
The e¤ects of the heat convection can be taken into account using Newton�s law
(Robin�s condition) in the form [20]:

qcond = hconv (T � Tenv) (6)

where hconv (T ) is the (temperature dependent) Heat Transfer Coe¢ cient (HTC)
by convection and Tenv is the ambient temperature.
The radiation heat �ux can be computed using Stefan�Boltzmann�s law as

a function of the casting surface temperature, T , and the ambient temperature
as:

qrad = �rad"rad
�
T 4 � T 4env

�
(7)

where �rad is the Stefan�Boltzmann constant and "rad is the emissivity para-
meter.
Finally, the heat �ux due to the heat conduction process between the casting

and the mould surfaces, qcond, can be taken into account using Newton�s law as:

qcond = hcond (T � Tmould) (8)

where hcond is the HTC by conduction between the casting and the mould
surfaces in contact, and Tmould is the mould temperature.

Remark 1 The HTC by conduction is de�ned as the inverse of the correspond-
ing thermal resistivity and it depends on di¤erent parameters at the contact in-
terface such as the contact pressure and the surfaces roughness, among others.
When the contact is between metallic materials (e.g. solidi�cation of aluminum
casting in permanent steel moulds), the HTC assumes very high values around
2000� 3000

�
W=m2K

�
. When using a sand mould, this value can be reduced to

100� 500
�
W=m2K

�
(see [11], [15], [20]).

Remark 2 Stefan�Boltzmann�s law can be rewritten as:

qrad = hrad (T � Tenv) (9)

where hrad (T ) is the (temperature dependent) HTC by radiation de�ned as:

hrad (T ) = �rad"rad
�
T 3 + T 2Tenv � TT 2env � T 3env

�
(10)
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This format is interesting for two reasons: �rstly, because it is possible to lin-
earize the contribution of the heat radiation term as:

qrad = hrad (T
n)
�
Tn+1 � Tenv

�
(11)

where Tn+1 = T
�
tn+1

�
is the current temperature at time tn+1, and and Tn =

T (tn) is temperature in the previous time-step. The second reason is that it
is extremely di¢ cult to separate the heat losses due to the convection and the
radiation mechanisms. Hence, the numerical model may use a unique HTC
accounting for both heat convection and radiation terms, as:

qloss = hloss (T � Tenv) (12)

where hloss (T ) is the (temperature dependent) HTC accounting for the total heat
loss through the surrounding environment.

Remark 3 The thermal problem in Eq.(4) can be solved using di¤erent numer-
ical methods such as: Finite Volume (FV), Finite Di¤erences (FD) or Finite
Element (FE) methods, among others. In this work, the results obtained in
both the numerical caibration and the following validation strategy refer to a
spatial FE discretization and a Backward-Euler time integration of the thermal
problem. Hence, after meshing the integration domain, V , is split into (ne) el-

ements as: V =
neX
e=1

V(e). The temperature �eld within each element is obtained

from the nodal values T(e) through the interoplation (shape) functions N(e), as:
T(e) = N(e)T(e). Moreover, following the Galerkin method, the test (weight)
function are chosen as: �T(e) = N(e). Hence, the dicrete form of the balance of
energy equation can be written as:

neX
e=1

R
V(e)

NT
(e)

�
C

�
T
(n)

(e)
�T (n�1)

(e)

�t

�
+ L

�
f
(n)
L �f(n�1)L

�t

��
dV(e)+

neX
e=1

R
V(e)

k BT(e)rT(e) dV(e) =
neX
e=1

W ext
(e)

(13)

where the B(e) =rN(e) and
neX
e=1

stands for the assembling procedure.

3 Eutectic model

The reference material in this work is SG cast-iron also known as ductile iron
or nodular iron. This material plays a key role for many engineering appli-
cations in automotive and aerospace industry due to the good combination of
high strength, good creep and fatigue resistance. Focusing on the SG eutectic
composition, the uni-nodular theory for stable equiaxial solidi�cation assumes
that after the nucleation the graphite nodules are encapsulated by the austenite
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dendrites and a constant ratio between the size of the austenite shell and the
graphite nodule is maintained during the grain growth ([26], [46], [13], [8]).
During the phase transformation, the volume of the casting, V , can be split

into liquid and solid phases as: V = VL + VS . The liquid and solid fractions
are de�ned as: fL = VL

V and fS = VS
V , respectively, so that: fL + fS = 1. The

evolution of the liquid fraction dfL
dt or, alternatively, the solid fraction rate:

dfS
dt = �

dfL
dt , de�nes the phase-change, that is, how the latent heat is absorbed

or released during the transformation. The phase transformation is monitored
at each point of the domain, so that the solidi�cation analysis depends on the
local evolution of the temperature �eld.
Hereafter, this solid phase is referred to as the eutectic phase, fE . Therefore,

fS = fE , being 0 � fE � 1. Hence, the weak form of the balance of energy
equation (4) is modi�ed by associating the latent heat release with the grain
growth of the eutectic phase: LdfLdt = �L

dfE
dt .

Figure 1 shows the temperature curve and its �rst derivative as recorded in a
typical DTA for an eutectic alloy. In this �gure, di¤erent key points are shown:

� T startL indicates the beginning of the solidi�cation. For an eutectic com-
position T startL is also assumed as the beginning of the eutectic phase
T startL = T startE . This value corresponds to a local minimum in the curve
of the �rst derivative of the temperature;

� dT
dt

��
T=TE

is the cooling rate used to characterize the nucleation law (see
Eq. 19);

� TminE and TmaxE are the temperatures corresponding to the local minimum
and maximum of the eutectic transformation. Hence, the �rst derivative
of the temperature curve is null at these points;

� TS indicates the solidus temperature and corresponds to a further local
minimum in the curve of the �rst derivative of the temperature.

In this work, the transformation kinetics of the eutectic phase is de�ned by
the following evolution law:

dfE
dt = AE (1� fE) fE fE (t = 0) = f

0
E (14)

This is an Avrami-type equation [4],[5],[6] which results into the character-
istic s-shaped or sigmoidal pro�le where the transformation rates are slow at
the beginning and at the end of the transformation but rapid in between (see
Figure 2). The initial slow rate can be attributed to the nucleation process and
the �rst growing phase which can be observed at the microscale, once the melt
cools down from the pouring temperature to the eutectic temperature. Note
that, an initial value fE (t = 0) = f0E has been de�ned to let the transformation
start. This initial fraction can be associated to the size of the graphite nodules
at the nucleation start (e.g. the size of the inoculant particle after the solubiliza-
tion into the melt). During the intermediate period the transformation is much
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Figure 1: Temperature evolution and its �rst derivative obtained from the DTA
of an Eutectic solidi�cation process. Identi�cation of the highlight temperatures
used for the characterization of the Eutectic solidi�cation model.

faster as the eutectic phase grows in the liquid without any mutual interaction.
Later, the eutectic grains begin to get in contact among them slowing down the
transformation. The maximum value of the transformation rate is controlled by
the (temperature-dependent) function AE (T ), de�ned as:

AE (T ) = �E

�
�TE
�T critE

�
E
(15)

where �TE = hT startE � T i is referred to eutectic undercooling, being T startE

the temperature threshold to initiate the eutectic transformation (see Figure
1), while �E and 
E are material parameters of the model. Expression (15)
is normalized by introducing the critical undercooling parameter �T critE . The
Macaulay brackets, h�i, implie that �TE = 0 if T > T startE . The eutectic
transformation begins when T � T startE and the higher is the undercooling, the
faster is the transformation.
The process is paused, dfEdt = 0, in case of recalescence. Recalescence is a

phenomenon that may occur when the latent heat released during the phase
change is higher than the heat extraction during the cooling process, provoking
a local increment of the temperature.

Remark 4 As an alternative to equation (14), the following equivalent format
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Figure 2: Solid fraction evolution as a function of the transformation rate pa-
rameter.

can be used:
dfE
dt = AE (1� fE)

�
f0E + fE

�
fE (t = 0) = 0 (16)

where the natural initial condition: fE (t = 0) = 0 is recovered.

Remark 5 The proposed evolution law can be enhanced by adding an exponen-
tial term as shown in the following expression [15]:

dfE
dt = AE (1� fE)

�
f0E + fE

�
exp (��E fE) fE (t = 0) = 0 (17)

being �E a new parameter of the model able to anticipate the peak corresponding
to the maximum transformation rate (see Figure 3). Hence, the transformation
is faster at the beginning of the phase-change while slowing down in the �nal
part. This is a more realistic model in accordance to the experimental evidence.

Next, the average grain size, RE , of the eutectic phase is computed from the
current value of the eutectic fraction, fE . Assuming an equiaxial shape for the
grains, it is possible to write:

fE =
4�

3
NER

3
E (18)

where NE is the nucleation density. In this work an instantaneous nucleation
law is assumed in the general form ([47],[49]):

NE = k1 + k2

�
_TE

�m
(19)
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Figure 3: Solid fraction rate during the solidi�cation process with or without
considering the exponential term.

where _TE = dT
dt

��
T=TE

is the cooling rate of the liquid phase at the eutectic
temperature (see Figure 1), while k1, k2 and m are coe¢ cients of the nucleation
law depending on the composition of the melt and on the inoculation treatment.
This given, the average grain size of the eutectic phase is computed as [48]:

RE =
3

r
3

4�

fE
NE

(20)

Remark 6 The microstructure features, as the nucleation density and the grain
size, are obtained a-posteriori contrariwise to the practice in the mesoscale ap-
proach.

The model is complemented by de�ning a mixture rule accounting for the
thermo-physical material properties of the di¤erent phases which coexist during
the solidi�cation process. According to the liquid and eutectic fractions, it is
possible to compute the thermal conductivity and the heat capacity of the melt,
k and C, respectively, as:

k =
ncX
i=1

kifi = kLfL + kEfE (21)

C =
ncX
i=1

Cifi = CLfL + CEfE (22)

10



Algorithm for the Eutectic model
Initialize:

T
(o)
(e) = To

f
(o)
E = f0E

Loop on time-steps: n = 1; number-of -time-steps
Compute the eutectic fraction:

A
(n�1)
E = �E

�D
T startE �T (n�1)

(e)

E
�T critE

�
E
f
(n)
E = f

(n�1)
E +A

(n�1)
E

�
1� f (n�1)E

�
f
(n�1)
E �t

Update liquid & solid fractions:

f
(n)
S = f

(n)
E

f
(n)
L = 1� f (n)S

Update thermo-physical properties:

C(n) = CLf
(n)
L + CEf

(n)
E

k(n) = kLf
(n)
L + kEf

(n)
E

Solve thermal problem:
neX
e=1

R
V(e)

NT
(e)

�
C(n)

�
T
(n)

(e)
�T (n�1)

(e)

�t

�
+ L

�
f
(n)
L �f(n�1)L

�t

��
dV(e)+

neX
e=1

R
V(e)

k(n) BT(e)rT
(n)
(e) dV(e) =

neX
e=1

W ext
(e)

Compute actual grain size:

N
(n)
E = k1 + k2

�
_T
(n)
E

�m
R
(n)
E = 3

r
3
4�

f
(n)
E

N
(n)
E

End loop

Table 1: Algorithm to solve the solidi�cation analysis using the eutectic model

The step-by-step algorithm to solve the solidi�cation problem for an eutectic
alloy is presented in Table 1.

Remark 7 The mixture rule establishes a direct relationship between the values
of the thermophysical properties and the evolution of the phase transformation
process. Typically, temperature-dependent tables are de�ned for each mater-
ial property within the full temperature range, from the melting to the ambient
temperature. Instead, the use of the mixture rule is su¢ cient to characterize
the material behavior in terms of the evolution of the di¤erent phases evolving
during the solidi�cation and cooling processes.
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4 Hypo-Eutectic model

The proposed model can be extended to deal with hypo-eutectic alloys. In this
case, two di¤erent transformations are taking place during the solidi�cation
process:

1. Firstly, the dendritic phase, referred to as the primary austenite (
0),
occurs. Its formation starts at the liquidus temperature, T startL , to �nish
at T startE , with the nucleation of the eutectic phase.

2. Later, the eutectic phase starts at T startE temperature, presents its maxi-
mum growth at the eutectic temperature, TE , to terminate at the solidus
temperature, TS . The eutectic phase of the SG cast-iron is characterized
by graphitic nuclei surrounded by the secondary austenite (
00) while in
the case of Lamellar cast iron (LG) there are graphite �akes surrounded
by the secondary austenite [41].

Figure 4 shows temperatures T startL , T startE and TS as recorded in the DTA
of a hypoeutectic alloy, and corresponding to local minima in the curve of the
�rst derivative of the temperature evolution during the phase transformation.
In this �gure, the eutectic plateau is characterized by TminE and TmaxE where the
�rst derivative vanishes.

This given, the solid fraction is obtained adding the contributions of the
dendritic phase fD, and the eutectic phase fE , as:

fS = fD + fE (23)

The partition ratio, �, is introduced to establish the volumetric partition
between these two phases, as:

0 � fD � 1� � (24)

0 � fE � � (25)

This ratio is de�ned as a function of the chemical composition of the alloy.
The model adopts the ratio between the actual equivalent carbon concentration,
Ceq (including the e¤ects of the Si segregation) and the carbon content, Ce, of
the eutectic composition:

� =
�
Ceq
Ce

��
 Ceq � Ce (26)

where � is a parameter of the model.
Consequently, the solid fraction is computed as:

fS = (1� �) f�D + � f�E (27)
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Figure 4: Temperature evolution and its �rst derivative obtained from the DTA
of a hypoeutectic solidi�cation process. Identi�cation of the highlight tempera-
tures used for the characterization of the hypoeutectic solidi�cation model.

where 0 � f�D � 1 and 0 � f�E � 1 are the normalized dendritic and the eutectic
fractions, respectively, that is:

fD = (1� �) f�D (28)

fE = � f�E (29)

The latent heat release in the balance of energy equation (4) for a hypo-
eutectic alloy is computed taking into account the transformation kinetics of
both phases as:

L
dfL
dt

= �L
�
dfD
dt

+
dfE
dt

�
= �L

�
(1� �) df

�
D

dt
+ �

df�E
dt

�
(30)

The transformation kinetics of the dendritic and the eutectic phases are
de�ned by the corresponding Avrami-type evolution laws:

df�D
dt

= AD (1� f�D)
�
f0D + f

�
D

�
exp (��D f�D) (31)

df�E
dt

= AE (1� f�E)
�
f0E + f

�
E

�
exp (��E f�E) (32)

where f0D and f
0
E are the initial dendritic and eutectic fractions at their respec-

tive nucleation time.

13



The transformation rates are controlled by the (temperature-dependent)
functions AD and AE , respectively, and de�ned as:

AD (T ) = �D

�
�TD
�T critD

�
D
(33)

AE (T ) = �E

�
�TE
�T critE

�
E
(34)

On the one side, the dendritic growth depends on the value of undercooling,
�TD, de�ned as:

�TD =


�TL � T

�
(35)

where �TL is the actual liquidus temperature which is varying because of the
carbon segregation. Its value is updated according to the solidi�cation evolution
using the following lever rule:

�TL = (1� fS)T startL + fST
start
E (36)

On the other side, the transformation rate of the eutectic phase depends on
the undercooling with respect to the eutectic temperature:

�TE =


T startE � T

�
(37)

It is interesting to observe that the Eutectic Model is a particular case of
the Hypoeutectic Model. If for the actual alloy Ceq = Ce than the partition
ratio: � = 1, and consequently: fS = fE . Hence, the solid fraction is computed
according to the evolution of the eutectic phase, only. Note that when T startL !
T startE then �TL ! T startE meaning that the dendritic phase is neglibible and the
the solidi�cation is characterized by the nucleation of the eutectic phase and
following grain growth.
Finally, the mixture rule used to compute the thermo-physical properties

accounts for both eutectic and dendritic phases, as:

k =
ncX
i=1

kifi = kLfL + kDfD + kEfE (38)

C =
ncX
i=1

Cifi = CLfL + CDfD + CEfE (39)

The corresponding step-by-step algorithm to solve the solidi�cation problem of
a hypo-eutectic alloy is shown in Table 2.

5 Validation strategy

In this Section, three di¤erent benchmarks are presented to validate the model
proposed for the solidi�cation process of cast iron alloys in sand molds. They are:
The Quick-Cup test, the Y-Shape test and the Cubes test. These benchmarks
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Algorithm for the Hypo-eutectic model
Initialize:

T
(o)
(e) = To

f
(o)
D = f0D
f
(o)
E = f0E

Loop on time-steps: n = 1; number-of -time-steps
Compute the actual liquidus temperature:

�T
(n�1)
L =

�
1� f (n�1)S

�
T startL + f

(n�1)
S T startE

Update the dendritic & eutectic fractions:

A
(n�1)
D = �D

�D
�T
(n�1)
L �T (n�1)

(e)

E
�T critD

�
D
A
(n�1)
E = �E

�D
T startE �T (n�1)

(e)

E
�T critE

�
E
f�D

(n) = f�D
(n�1) +A

(n�1)
D

�
1� f�D

(n�1)
�
f�D

(n�1)�t

f�E
(n) = f�E

(n�1) +A
(n�1)
E

�
1� f�E

(n�1)
�
f�E

(n�1)�t

f
(n)
D = (1� �) f�D

(n)

f
(n)
E = � f�E

(n)

Update liquid & solid fractions:

f
(n)
S = f

(n)
D + f

(n)
E

f
(n)
L = 1� f (n)S

Update thermo-physical properties:

C(n) = CLf
(n)
L + CDf

(n)
D + CEf

(n)
E

k(n) = kLf
(n)
L + kDf

(n)
D + kEf

(n)
E

Solve thermal problem:
neX
e=1

R
V(e)

NT
(e)

�
C(n)

�
T
(n)

(e)
�T (n�1)

(e)

�t

�
+ L

�
f
(n)
L �f(n�1)L

�t

��
dV(e)+

neX
e=1

R
V(e)

k(n) BT(e)rT
(n)
(e) dV(e) =

neX
e=1

W ext
(e)

Compute actual grain size:

N
(n)
E = k1 + k2

�
_T
(n)
E

�m
R
(n)
E = 3

r
3
4�

f
(n)
E

N
(n)
E

End loop

Table 2: Algorithm to solve the solidi�cation analysis using the hypo-eutectic
model

15



are characterized by di¤erent thermal modules and chemical compositions of
the melt in order to study the response of the model to a wide range of process
parameters and cooling rates. In particular, two di¤erent families of alloys
have been studied: the eutectic ductile iron and the hypoeutectic grey cast
iron. Hence, changing the chemical composition and the melt treatment, it is
possible to reproduce di¤erent solidi�cation behaviours, characterized by speci�c
phase transformation temperatures and recalescence phenomena. To validate
the model, the temperature �eld has been monitored during the solidi�cation
process by means of thermocouples located either in the melt or in the mold.
The temperature evolution measured at the thermocouples has been compared
to the numerical predictions.
The proposed model has been implemented into the software package COMET

[22], a Finite Element (FE) based platform for the analysis of couple thermo-
mechanical problems. Hence, the calculations have been performed in the en-
hanced version of this software developed at CIMNE (International Center for
Numerical Methods in Engineering).
The proposed benchmarks have been characterized according to the process

parameters and the material data as detailed in the corresponding references.
Hence, it was no possible to assess the performance of the mixture rule model
described in the above Sections due to the lack of data.

5.1 Quick Cup test

The Quick Cup test refers to the solidi�cation of a small amount of cast iron
poured into a little sand cup, commercially known as Quick Cup. This cup is
characterized by a standard geometry which includes a K-type thermocouple
inserted into a thin quartz tube and located at the hot spot of the specimen
to measure the temperature evolution during the solidi�cation process. The
Quick Cup is one of the easiest and cheapest way to study the solidi�cation of
di¤erent casting alloys. It is extensively used in the foundry industry and it is
the standard in DTA allowing for a quick quality control of the melt just before
the pouring process [50]. The Quick Cup dimensions and the location of the
thermocouple are shown in Figure 5.
In this work, two di¤erent melt compositions have been considered:

1. Quick Cup test-1: an Eutectic ductile iron with the following chemical
composition: 3:52% C, 2:18% Si, 0:29% Mn and 0:01% S. The melt
treatment consists of a Mg treatment (0:05%) and an inoculation.

2. Quick Cup test-2: a Hypoeutectic grey cast iron with the following chem-
ical composition: 3:08% C, 2:14% Si, 0:82% Mn, 0:06% S and 0:05% P
with an inoculation melt treatment.

The �rst test was chosen to assess the model for an eutectic solidi�cation.
The second test extends the assessment to a hypoeutectic alloy characterized
by a dendritic austenite growth, where both undercooling and recalescence phe-
nomena occur.
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Figure 5: Quick-Cup test geometry: dimensions in [mm].

In this work, the geometry of the Quick Cup test has been simpli�ed to an
equivalent 2D geometry with the same thermal module as for the original 3D
geometry. The objective of such simpli�cation is the possibility to performe a
fast 2D sensitivity analysis to calibrate both thermo-physical properties and the
parameters of the solidi�cation model.
The FE discretization is de�ned by 464 nodes and 833 triangular elements

with an average mesh size of 2[mm]. The time integration scheme uses a con-
stant time-increment: �t = 1[s].
The simulation of the pouring phase has been omitted, so that only the

solidi�cation process has been considered. A uniform initial temperature of
1300oC and 20oC has been assumed for the casting and for the sand mold,
respectively.
The Quick Cup is made of resin bonded sand. As in Celentano et al. [12],

the following thermal properties of the mould have been adopted for the numer-
ical simulations: density 1550

�
kg=m3

�
, thermal conductivity 0:8 [W=mK] and

speci�c heat 1000 [J=kgK]. The thermal properties of both grey cast iron and
ductile iron adopted in this work refer to those used in [12] and [10]: density
7000

�
kg=m3

�
and latent heat 228097 [J=kg]. The speci�c heat and thermal

conductivity are temperature-dependent material properties and they are re-
ported in Table 3. Note that a higher thermal conductivity is assumed when
the temperature is higher than the melting temperature, in order to take into
account the natural convection in the liquid phase.
The temperature evolution during the solidi�cation process obtained in the

numerical simulation is driven by the Heat Transfer Coe¢ cients (HTC) at
boundaries of the inegtarion domain. On the one hand, the initial cooling
of the melt after pouring is strictly related to the value HTC chosen at the
casting/mould interface. On the other hand, the cooling phase after the solid-
i�cation process is controlled by the HTC adopted for the heat dissipation by
convection/radiation through the surrounding environment. Both values have
been calibrated to match the experimental evidence. The resulting HTC used
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Temperature [�C] Speci�c Heat [J=kgK] Temperature [�C] Conductivity [W=mK]

20 500 420 41:0
600 750 560 37:0
800 750 700 33:6
1073 820 840 28:0
1155 840 980 22:5
1400 900 1120 18:8

1250 65:0

Table 3: Quick-Cup test:Thermal properties of cast iron

Eutectic phase

T startE = 1170oC
�T critE = 50oC

�E = 1

E = 4
�E = 0

f0E = 0:1%

Table 4: Quick-Cup test: parameters used to characterize the eutectic model

for the heat exchange between casting and mold surfaces is 500
�
W=m2K

�
. A

convection/radiation HTC of 50
�
W=m2K

�
has been adopted to account for

the heat dissipation through all the external surfaces of both the sand mould
and the casting, exposed to the ambient temperature of 20�C.
The comparison between the experimental measurements and the prediction

of the numerical model in term of the temperature evolution at the center of
the casting is shown in Figures 6 and 7 for the eutectic and hypoeutectic alloy
compositions, respectively.
In the case of eutectic ductile cast iron, 3 di¤erent phases can be clearly

distinguished in the temperature evolution graph shown in Figure 6: (i) a fast
cooling of the liquid, (ii) a plateau caused by the isothermal solidi�cation of the
eutectic phase and �nally, (iii) a sudden change in the slope of the temperature
curve, denoting the end of solidi�cation and the beginning of the �nal cooling
process.
The temperature curve resulting from the numerical analysis reproduces

with great accuracy the three phases described above, including both the un-
dercooling and the recalescence phenomena produced after the nucleation of the
eutectic phase. The length of the solidi�cation plateau (i.e. the solidi�cation
time) depends on the actual value of latent heat, which is speci�ed as a mater-
ial property, while the temperature evolution during the phase-change is strictly
related to the solidi�cation model adopted.
Table 4 shows the parameters used to feed the eutectic model proposed in

this work.
It can be noted that T startE is a parameter of the model used to trigger

18



Dendritic phase Eutectic phase

T startL = 1260oC T startE = 1180oC
�T critD = 40oC �T critE = 50oC

�D = 1 �E = 1

D = 4 
E = 4
�D = 0 �E = 0

f0D = 0:1% f0E = 0:1%
� = 0:4

Table 5: Quick-Cup test: parameters used to characterize the hypoeutectic grey
cast-iron

the beginning of the eutectic transformation. This value corresponds to the
change in the cooling rate of the liquid phase caused by the nucleation of the
eutectic phase. The value of the eutectic temperature, TE is lower than T startE

and it corresponds to the temperature plateau during the solidi�cation process:
TE = 1150

oC, characteristic for such alloy.
In the case of hypoeutectic grey cast iron, two di¤erent transformations

take place during the solidi�cation: �rstly, the formation of the dendritic phase
corresponding to the primary austenite 
0, followed by the nucleation and growth
of eutectic cells composed by secondary austenite 
00 (also referred to as eutectic
austenite) and graphite �akes [41]. Both transformations can be clearly observed
in Figure 7, where the temperature measurement and the model prediction
are compared. The dendritic growth of the primary austenite starts when the
temperature drops below the liquidus temperature, referred to as T startL . A �rst
plateau due to the latent heat release of this transformation can be observed
around this temperature threshold. The model takes into account the increase of
carbon content in the liquid due to the dendritic growth by reducing the actual
value of the liquidus temperature according to the solid fraction evolution as
stated in Eq. (36). This a¤ects the cooling rate of the casting just before the
eutectic transformation. Additionally, by modifying the parameter, �, of the
lever rule de�ned in Eq. (26), it is possible to split the latent heat delivery
intended for the dendritic and the eutectic transformations. The value chosen
for this parameter depends on the actual composition of the melt as well as
on the inoculation treatment, allowing for an easy calibration of the model
response.
The parameters adopted to characterize the hypoeutectic model are shown

in Table 5.
A good agreement between the model prediction and the experimental evi-

dence is achieved, capturing the temperature evolution and the cooling rate in
the casting during the phase change, as well as the amount of latent heat re-
leased by the dendritic and eutectic transformation. Both dendritic and eutectic
undercooling and recalescence phenomena are reproduced with remarkable ac-
curacy.
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Figure 6: Quick-Cup test: Eutectic ductile cast iron. Temperature evolution at
the hot-spot during the solidi�cation process

5.2 Y-Shape test

The Y-Shape casting refers to a test presented by Celentano et al. [12], and
is repurposed in this work to validate the solidi�cation model for hypoeutectic
grey cast iron.
The geometry and the dimensions of the casting are shown in Figure 8.

Specimens of this shape are commonly used for the mechanical characterization
of di¤erent alloys [7]. The top part of Y-Shape geometry works as a simple riser
to avoid porosities in the lower part. Hence, it is possible to extract cylindrical
samples from the bottom part free of casting defects and showing a good struc-
tural integrity. During the casting process, a thermocouple, denoted by TCY,
is placed at the mid-section of the lower part of the casting sample in order to
study the temperature evolution during the solidi�cation. Note that this is not
the hot spot of the casting. Because of this, the cooling conditions observed
in the Y-Shape test are not the same as for the Quick-Cup test. Furthermore,
this benchmark test has larger thermal module with longer solidi�cation times,
more representative of industrial foundry components.
The analysis is carried out in 2D with a FE discretization consisting of 2004

triangular elements and 1058 nodes and a time-increment of: �t = 1[s]. The
average mesh sizes adopted are 4[mm] and 8[mm] for the casting and the mould,
respectively.
The mold is made of resin bonded sand with material properties similar to

the ones used for the Quick Cup test. The main di¤erences lie in the di¤erent
degree of sand compaction and humidity content. According to [12], the density
is set to 1550

�
kg=m3

�
, the speci�c heat is higher: c = 1300 [J=kgK] and, �nally,
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Figure 7: Quick-Cup test: Hypoeutectic grey cast iron. Temperature evolution
at the hot-spot during the solidi�cation process

the thermal conductivity is a temperature-dependent properties as shown in
Table 6.
The casting alloy is a hypoeutectic grey cast-iron with a much higher carbon

content compared to the Quick Cup test-2, so that a di¤erent solidi�cation
behaviour is expected. The reported chemical composition is the following:
3:45% C, 2:4% Si, 0:66% Mn, 0:014% S and 0:017% P with an inoculation
melt treatment. Nevertheless, the same thermophysical material properties have
been used as for the Quick-Cup test. The di¤erences between the two casting
alloys are re�ected in the parameters adopted for the solidi�cation model as
shown in Table 7.
The pouring temperature is 1370oC, used as homogeneous initial tempera-

ture for the heat transfer analysis. The HTC coe¢ cients used to characterize
the heat �ux between casting and mould as well as used for the heat convection
model are the same as for the Quick Cup test.
Figure 9 shows a notable agreement between the experimental measurements

and the corresponding numerical results in terms of temperature evolution at the
thermocouple location TCY. Due to the higher carbon content of the Y-Shape
test, the primary austenitic phase has a smaller impact on the solidi�cation
trend than in the Quick-Cup test, showing a lower temperature of liquidus and
a much smaller temperature plateau corresponding to the dendritic transforma-
tion. This is re�ected in the lower value of T startL as well as the lower value of
the � parameter adopted.
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Figure 8: Y-Shape test geometry. Dimensions (in mm) of the casting equipment.
TCY denotes the thermocouple location.

Temperature [�C] Conductivity [W=mK]

20 0:54
300 0:57
500 0:65
700 0:79
900 1:00
1100 1:26
1300 1:59

Table 6: Y-Shape test: thermal conductivity of the resin bonded sand

5.3 Cubes Test

The Cubes test refers to the casting setting presented by Salsi et al. [43]. A
cluster of 7 cubes of di¤erent sizes: 60, 75, 100, 120, 150, 180 and 210 [mm],
respectively, is instrumented and an eutectic ductile iron alloy is used for the
casting operation. The cubes are labeled with the numbers 1 to 7 according to
their ascending size as shown in Figure 10. The mold dimensions are: 1200�1600
[mm2] and 640 [mm] height. The FE discretization consists of 1391 nodes and
2624 tetrahedral elements. The average mesh sizes are: 3, 5 and 10[mm] for the
three cube sizes of 60, 100 and 180[mm], respectively. The time increment used
is: : �t = 1[s].
This casting experiment was designed to obtain a wide range of solidi�ca-

tion conditions due to the increasing thermal modules and, consequently, lower
and lower cooling rates according to the cubes size. Hence, a wide range of
microstructures and mechanical properties were obtained. The temperature
evolution during the solidi�cation has been recorded at the hot spot (center) of
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Dendritic phase Eutectic phase

T startL = 1215oC T startE = 1170oC
�T critD = 40oC �T critE = 70oC

�D = 1 �E = 1

D = 4 
E = 4
�D = 0 �E = 0

f0D = 0:1% f0E = 0:1%
� = 0:25

Table 7: Y-Shape test: parameters used to characterize the hypoeutectic alloy

Dendritic phase Eutectic phase

T startL = 1173oC T startE = 1172oC
�T critD = 30oC �T critE = 100oC

�D = 1 �E = 1

D = 4 
E = 4
�D = 0 �E = 0

f0D = 0:1% f0E = 0:1%
� = 0:075

Table 8: Cubes test: Parameters used to characterize the solidi�cation model

each cube by means of di¤erent thermocouples (K-type chrome/aluminum) with
alumina shielding to protect them against prolonged expositions to high temper-
atures. The detailed description of the experimental setting, materials, methods
and experimental measurements can be found in [43]. Additional information
about the metallurgical and mechanical properties and the microstructure ob-
tained for the di¤erent cubes of the casting are reported in [17].
This test allows for validating the solidi�cation model in the case of this

more complex casting processes as well as to check the model accuracy when
dealing with very di¤erent thermal modules.
The casting alloy is a ductile iron with a carbon content close to the eutectic.

The chemical composition is: 3:72% C, 2:19% Si, 0:19% Mn, 0:048% Mg,
0:001% S and 0:025% P with inoculation melt treatment and Mg addition.
The thermophysical properties of the cast-iron are the same as for Quick-Cup
test-1. If we compare the two alloys, the Cubes test presents a higher carbon
and a lower silicon content. Table (8) shows the parameters used to characterize
the solidi�cation model.
The mold is made of green sand and the same thermal properties used in

[43] have been adopted for the heat transfer analysis presented in this work:
density: 1370

�
kg=m3

�
, speci�c heat: 1030 [J=kgK]. The thermal conductivity

is de�ned as a temperature-dependent property as shown in Table 9.
Despite of a pouring temperature of 1350oC, after the mould �lling opera-

tion, the temperature �eld is not uniform. Hence, the initial temperature for
the following solidi�cation and cooling phases is di¤erent for each cube.
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Figure 9: Y-Shape test. Temperature evolution at the thermocouple location
TCY during the solidi�cation process: Experimental measurement vs. Numer-
ical result.

Figure 11 shows the temperature evolution recorded at the thermo-couples
1, 3 and 6 belonging to the cubes of 60, 100 and 180 [mm] and compares them
with the numerical results. The measured temperatures show a �rst latent heat
release previous to the eutectic solidi�cation which is related to the formation
of a small amount of primary austenite phase (
0). Hence, the hypoeutectic
model has been calibrated adopting a small value: � = 0:075 for the partition
ratio. Once again, the solidi�cation model proposed presents a good agreement
with the experimental evidence in terms of cooling rates, solidi�cation times,
undercooling and recalescence phenomena for the 3 cubes, each one character-
ized by a di¤erent thermal module. More in detail, it is possible to observe
how the undercooling and the recalescence are more pronounced for the smaller
thermal modules. Contrarily, the temperature of the eutectic plateau increases
according to the size (thermal module) of the cubes. All these phenomena are
well captured by the proposed model.

5.3.1 Microstructural analysis

The objective of this casting experiment is the characterization of the ductile
cast-iron for di¤erent cooling conditions and their in�uence on the �nal metal-
lurgical properties in terms of nodule density and grain size distribution. Hence,
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Figure 10: Cubes Test geometry. Dimensions (in mm) of the cubes in the casting
experience.

Temperature [�C] Conductivity [W=mK]

20 0:40
200 0:45
400 0:51
705 0:59
1005 0:77
1300 1:13

Table 9: Cubes test: thermal Conductivity of the Green Sand mold
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Figure 11: Cubes Test: Evolution of the temperature �eld during the solidi�ca-
tion. Comparison between the experimental measurements and the numerical
results for the cubes 1,3 and 6.

in the Cubes test the sensitivity to the di¤erent cooling conditions depends on:
(i) the size of each cube; (ii) the distance from the center (thermal center) of
the specimen. The outcome of this experimental campaign is detailed in [17].
The general trend in the experimental data shown in Figure 12 presents some

�uctuation due to measurement uncertainties in the optical analysis. Moreover,
the microstructure is a¤ected by some undesired phenomena such as the local
segregation, the presence of microporosity or the degeneration of the graphite
nodules near the mold surfaces due to the sulphur content of the sand mould.
The experimental measurements show a higher density of graphite nodules

for the smaller cubes or near the external surfaces according to the corresponding
higher cooling rates. Similarly, the grain size decrease with the distance from
the center of the cubes. It is important to note that the radius of the eutectic
grain has been obtained multiplying the radius of the graphite nodule by a factor
of 2:4 that is assuming a constant ratio between the size of the austenitic shell
and graphite nodule for eutectic ductile irons [46].
These results have been used to calibrate the nucleation law in Eq. (19) and

the corresponding nucleation parameters are reported in Table 10. The average
grain size (within the hypothesis of graphite nodules surrounded by equiaxial
austenitic shells) has been estimated using Eq. (20).
The comparison between the experimental data and the numerical predic-

tions for cubes 1, 3 and 6 is shown in Figure 12. In this �gure both the nodules
density and the average grain size are presented as a function of the distance
from the center of each of the 3 casting samples selected. There is a good
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Nucleation parameters

K1 = 236:5
K2 = 53:5
m = 1

Table 10: Cubes test: best suitable parameters for the nucleation law

agreement between the experiments and the numerical analysis even if the eu-
tectic grain size predicted is slightly larger than the measurements. This can
be attributed to the speci�c technique adopted for the 2D optical analysis. In
fact, using this method, the average grain size refers to a generic section of the
casting sample where the cutting plane divides the eutectic grains, leading to a
systematic underestimation of their real sizes.

6 Conclusions

In this work, a novel solidi�cation model suitable for both eutectic and hypoeu-
tectic alloy compositions is described. The latent heat release is not de�ned
by a generic temperature-dependent solid fraction function nor obtained from
meso or microscale metallurgical models. Instead, a phenomenological model is
introduced, depending on apropos evolution laws for both the dendritic and the
eutectic phases. Hence, the latent heat released by the di¤erent phases evolv-
ing during the liquid-to-solid phase-change is controlled by ad-hoc Avrami-type
functions de�ned for each phase.
The model allows to reproduce the recalescence phenomena observed during

the solidi�cation process as well as the thermal undercooling at the beginning
of the phase-change.
The e¤ects induced by the increase in the carbon content observed during

the solidi�cation process has also been considered modifying the actual liquidus
temperature according to the solidi�cation of the austenitic phase.
The model is complemented by de�ning a mixture rule accounting for the dif-

ferent thermophysical material properties of all the phases which coexist during
the solidi�cation process.
Finally, the average grain size (under the hypothesis of equiaxial grain growth)

resulting from the microstructure evolution during the phase-change process is
obtained a-posteriori by specifying a suitable nucleation law to estimate the
actual nucleation density.
The proposed model is tested by reproducing the solidi�cation patterns of

both eutectic and hypoeutectic alloys. Firstly, the model has been calibrated
considering simple castings as the Quick Cup test and the Y-shape test. Later,
the numerical model is validated using the Cubes test, a casting experiment
closer to the foundry production. The comparison between the numerical results
and the experimental evidence shows a remarkable accuracy in terms of both
temperature evolution and metallurgical features.
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Figure 12: Cubes Test Microstructures. Experimental measurements and nu-
merical result for microstructural main features (density of nodules and average
grain radius) along a pro�le from the center to a vertex of cubes of 60,100,180
mm side
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