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This paper contributes to the formulation of continuum damage models for orthotropic materials under
plane stress conditions. Two stress transformation tensors, related to tensile and compressive stress
states, respectively, are used to establish a one-to-one mapping relationship between the orthotropic
behaviour and an auxiliary model. This allows the consideration of two individual damage criteria,
according to different failure mechanisms, i.e. cracking and crushing. The constitutive model adopted
in the mapped space makes use of two scalar variables which monitor the local damage under tension
and compression, respectively. The model affords the simulation of orthotropic induced damage, while
also accounting for unilateral effects, thanks to a stress tensor split into tensile and compressive contri-
butions. The fundamentals of the method are presented together with the procedure utilized to adjust the
model in order to study the mechanical behaviour of masonry material. The validation of the model is
carried out by means of comparisons with experimental results on different types of orthotropic masonry
at the material level.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Masonry is a composite material characterized by an overall
anisotropic behaviour from the phenomenological point of view
[1,2]. This is due to the composite and heterogeneous structure
reflecting the particular geometrical arrangement of units and
mortar joints. Researchers have provided micro-modelling and
macro-modelling techniques for the analysis of masonry [3]. In
the former approaches, the discretization is carried out at the level
of the components, i.e. units and mortar joints. In the latter ap-
proaches, the whole material is regarded as an equivalent homoge-
neous orthotropic continuum because fully anisotropic description
is not readily available.

Early micro-modelling of masonry is due to Page [4], whereas
early macro-modelling is due to Samarasinghe et al. [5]. From then
on, the micro-modelling approach has experienced larger develop-
ment in spite of its high computational costs. Macro-modelling still
appears as an interesting alternative to produce computationally
more efficient models. However, the macro-modelling approach
finds some difficulty in the description of the orthotropic behav-
iour in linear as well as in nonlinear ranges.

Existing approaches for the determination of overall elastic
properties of masonry are based on the homogenization theory.
Such a methodology consists in identifying an elementary cell,
ll rights reserved.
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which generates an entire panel by regular repetition. In this
way, a field problem can be written on the unit cell in order to
achieve average values for the homogenized masonry material,
starting from the knowledge of the properties of the constituents
and the geometry of the elementary cell. Several procedures have
been addressed to the definition of the equivalent elastic moduli
for brick masonry, see for instance Refs. [6–10].

There have been few attempts to obtain a general failure crite-
rion for masonry because of the difficulties in developing a repre-
sentative biaxial test and the large number of tests involved. The
problem was discussed firstly in [11,12] with reference to the fail-
ure of shear walls. The test data of Page [13,14] were interpolated
in [15] by means of three elliptic cones which do not correspond
with the observed distinct modes of failure, as the authors men-
tioned. The elliptic cones have been expressed by a second-order
tensor polynomial. On the other hand, a failure criterion was pro-
posed in [16] resorting to four different domains for the case of ma-
sonry with perforated bricks.

Some authors proposed a single failure surface for the expres-
sion of analytical failure models of masonry. For instance, the
Tsai–Wu [17] cubic tensor polynomial already available for com-
posite materials was used in [18], whereas a double pyramid with
rectangular base was assumed in [19], for which the slopes of the
faces correspond to the internal friction angles of the material. The
choice of a single failure criterion for masonry leads to inevitable
approximations: the non-acceptable fit of Page’s experimental val-
ues resulting from the Hoffman [20] criterion was demonstrated in
[21]. Furthermore, in the framework of computational plasticity, a
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single surface fit of the experimental values would lead to an extre-
mely complex yield surface with a mixed hardening/softening rule
in order to describe properly the inelastic behaviour. Since the
aforementioned approach is practically non-feasible, an alternative
consists in expanding the conventional formulations for isotropic
quasi-brittle materials to describe orthotropic behaviour. Such
formulations consider, generally, different inelastic criteria for ten-
sion and compression, as in [22] where Rankine and Drucker–Prag-
er [23] criteria were assumed. An extension of such approach is
presented in [24], where the material admissible field was
bounded by a Hill-type yield criterion for compression and a
Rankine-type yield criterion for tension. The choice of two failure
surfaces provides better agreement with Page’s experimental
results.

Concerning masonry nonlinear behaviour, in principle, the
damage evolution is anisotropic due to the degradation of the het-
erogeneous structure. Nevertheless, the existing closed-form
macro-models devoted to masonry usually combine the initial
orthotropy with orthotropic damage, because of the intrinsic com-
plexities of introducing anisotropic behaviour in the nonlinear
range. In the field of Continuum Damage Mechanics (CDM) models,
the masonry natural axes (i.e. the bed joints and the head joints
directions) were assumed also as damage principal axes in [19].
In each direction, two independent scalar damage parameters are
assumed, one for compression and one for tension. Their evolution
is described by functions derived from those used for isotropic
damage of concrete in terms of material fracture energy in tension
or compression. With this energy-based approach tensile and com-
pressive softening can be described within the same context, being
the underlying failure mechanisms amenable to continuous crack
growth at micro-level. Inelastic behaviour in shear, which in
micro-models is related to the mode II fracture energy, cannot be
directly included in continuum models and hence it is associated
with tension and compression modes in a principal stress space.
A similar approach was followed in [24] but in the framework of
computational plasticity. In tension, an exponential softening law
was adopted for the stress–strain diagrams, with different fracture
energies along each material axes. Therefore, the principal direc-
tions of damage are fixed and aligned with the initial orthotropy
axes. Although the model incorporates two different fracture ener-
gies, a single scalar internal parameter is used in the plasticity
algorithm in order to measure simultaneously the amount of soft-
ening in two material axes. In compression, the authors adopted an
isotropic parabolic hardening law, followed by a parabolic/expo-
nential softening law with different compressive fracture energies
along the material axes.

The closed-form macro-models are efficient and suitable for
complex structural computations. A drawback of such an approach
lies in difficulties related to the identification of the needed mate-
rial parameters, since the necessary experimental procedures
could be quite expensive and time consuming. The use of homog-
enization techniques in estimating macro-scale properties from
mortar and brick parameters constitutes an option, e.g. [25–34].
An important class of models addresses the aforementioned diffi-
culty by resorting to multi-level or multi-scale methods [35–39]
which transfer the identification problem to the scale of constitu-
ents. However, such approaches require considerable computa-
tional effort when facing real case studies, even if optimization
strategies were proposed to attenuate the drawback [40].

This paper presents a continuum damage model in which the
orthotropic behaviour is simulated using the concept of mapped
stress tensor, firstly introduced in the framework of plasticity by
Betten [41,42] and refined by Oller et al. [43–45] afterwards.
According to such approach, a mapping relationship is established
between the orthotropic behaviour and an auxiliary model. The
problem is solved in a mapped space and the results are
transported to the real field, with considerable benefits in terms
of simplicity and computation costs.

Several enhancements are introduced into the original Betten’s
theory in order to deal with masonry material. Firstly, the adoption
of two stress transformation tensors [46], related to tensile or com-
pressive stress states, permits the consideration of different behav-
iours in tension and compression. Two individual damage criteria,
related to different failure mechanisms, can be assumed accord-
ingly. Secondly, the constitutive model adopted in the mapped
space is based on CDM and makes use of two scalar variables
which monitor the local damage under tension and compression,
respectively.

The paper is organized as follows: firstly, the formulation of the
model is presented together with the description of the constitu-
tive relationships adopted. Then, the general theoretical frame-
work is adjusted to the particular case of the masonry material.
Finally, the computational representation of complex failure loci
obtained by experiments on orthotropic masonries is provided.

2. Definition of the space transformation tensors

The methodology adopted in this work is based on assuming a
real anisotropic space of stresses r and a conjugate space of strains
e, such that each of these spaces has its respective image in a
mapped space of stresses r* and strains e*, respectively (see
Fig. 1). The relationship between these spaces is defined by

r� ¼ Ar : r or r�ij ¼ Ar
ijklrkl; ð1Þ

e� ¼ Ae : e or e�ij ¼ Ae
ijklekl; ð2Þ

where Ar � Ar
ijkl and Ae � Ae

ijkl are the transformation tensors, for
stresses and strains, respectively, relating the mapped space and
the real one. These rank four-tensors embody directly the elastic
and strength anisotropy of the material [45].

As discussed before, masonry presents different inelastic behav-
iour, strength and failure mechanism in tension and compression.
For these reasons, two distinct damage criteria must be introduced
with a constitutive model able to distinguish tension stress states
from compression stress states. An essential feature of the pro-
posed model is that a split into tensile and compressive contribu-
tions is introduced. Such a split is carried out on the stress tensor,
according to [47–54]:

rþ ¼
X3

i¼1

hriipi � pi; ð3Þ

r� ¼ r� rþ; ð4Þ
where ri denotes the ith principal stress value from tensor r and pi

represents the unit vector associated with its respective principal
direction. The ramp function indicated by the Macaulay brackets
h�i returns the value of the enclosed expression if positive, but sets
a zero value if negative. As in Eqs. (3) and (4), in the ensuing lines
tensile and compressive entities will be pointed out through the
using of indices (+) and (�), respectively.

The split shown by Eqs. (3) and (4) can be expressed in an alter-
native compact form as follows:

rþ ¼ P : r; ð5Þ
r� ¼ ðI� PÞ : r; ð6Þ

where I is the rank-four identity tensor and P is a projection oper-
ator such that

P ¼
X3

i¼1

HðriÞpi � pi � pi � pi; ð7Þ

where H(ri) denotes the Heaviside function computed for the ith
principal stress ri.



Fig. 1. Relationship between the real anisotropic space and the mapped isotropic space [45].
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Differently from Betten’s theory, this work proposes distinct
transformations of the tensile and compressive stress components
from the real to the mapped space [46]:

rþ� ¼ Arþ : rþ; ð8Þ
r�� ¼ Ar� : r�; ð9Þ

where Arþ � Arþ
ijkl and Ar� � Ar�

ijkl are the stress transformation ten-
sors, for positive and negative components r+ and r�, respectively,
relating the mapped space and the real one. They are non-singular
and positive-definite. The assumption of two distinct stress trans-
formation tensors permits to map the real stresses and solve the
problem in an auxiliary workspace, by adopting two different
isotropic damage criteria for tension and compression.

In this work, plane stress conditions are assumed and the stress
space transformation tensors in the (local) material coordinate sys-
tem (denoted by axes 1 and 2) have the following components:

Ar�
1111

0 ¼ f��11 =f�11;

Ar�
2222

0 ¼ f��22 =f�22;

Ar�
1212

0 ¼ Ar�
1221

0 ¼ f��12 = 2f�12

� �
;

Ar�
2112

0 ¼ Ar�
2121

0 ¼ f��12 = 2f�12

� �
;

Ar�
1122

0 ¼ Ar�
1112

0 ¼ Ar�
1121

0 ¼ 0;

Ar�
2211

0 ¼ Ar�
2212

0 ¼ Ar�
2221

0 ¼ 0;

Ar�
1211

0 ¼ Ar�
1222

0 ¼ Ar�
2111

0 ¼ Ar�
2122

0 ¼ 0:

ð10Þ

The assumption of plane stress conditions can be easily modified
accounting also for three-dimensional effects due to in-plane load-
ing [55] or even resorting to a complete three-dimensional formu-
lation [45].

Note that from Eq. (10) on, tensors defined in the local coordi-
nate system of the orthotropic material will be marked by apex (0).

The parameters f��ii , with i = 1, 2, are the mapped tensile and
compressive strengths along directions 1 and 2. Since we assume
two distinct isotropic criteria in the mapped space, it results that
fþ�11 ¼ fþ�22 ¼ fþ� and f��11 ¼ f��22 ¼ f��. The choices of fþ� and f�� are
arbitrary. The expressions of the mapped shear parameters fþ�12
and f��12 derive from the particular isotropic criteria adopted for
tension and compression.

Assuming a representation of the mapped failure surfaces in
terms of stress components r�11; r�22; s�12 , the parameters f��ij rep-
resent the six intersections of the mapped failure surfaces with the
positive and negative branches of the corresponding axes. The
parameters f�ij , on the other hand, represent the intersections with
the axes of the failure surfaces defined in the real orthotropic stress
space r11, r22, s12. This concept will be detailed in Section 4.1. The
orthotropic real strengths f�ij can be obtained from adequate exper-
imental tests or homogenization techniques.

The need for two stress transformation tensors to account for
different behaviour of the material in tension and compression is
evident from (10). Most of all, it always results that Arþ

1212
0
– Ar�

1212
0

and the same holds for symmetrical components Ar�
1221; Ar�

2112;

Ar�
2121. In fact, it results that fþ�12 =fþ12 – f��12 =f�12 since fþ12 – f�12 and

fþ�12 – f��12 , due to the assumption of distinct damage criteria in ten-
sion and compression. Therefore, a single stress transformation
tensor would not lead to the correct masonry shear strength. More-
over, such a choice would force the ratio between the tensile and
compressive strength to be equal along each axis, whilst in ma-
sonry, typically, f�11=fþ11 – f�22=fþ22.

The stress space transformation tensors in the global coordinate
system xi are readily obtainable from the definitions (10) of the
tensor components in the local principal axes x0i of the orthotropic
material. If rij represents cosðx0i; xjÞ, it results that

Ar�
ijkl ¼ rpirqjrrkrslA

r�
pqrs
0
: ð11Þ

It is possible to relate the positive and negative stress transforma-
tion tensors to the global stress transformation tensor. In fact, after
the definitions (8) and (9), the condition

r� ¼ rþ� þ r�� ð12Þ

must still apply. Therefore, the previous expression yields

Ar : r ¼ Arþ : rþ þ Ar� : r�;

Ar : r ¼ Arþ : P : rþ Ar� : ðI� PÞ : r ð13a;bÞ



920 L. Pelà et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 917–930
and hence [46]

Ar ¼ Arþ : Pþ Ar� : ðI� PÞ: ð14Þ
The strain space transformation tensor Ae can be derived from (1)
and the constitutive equation:

Ae ¼ ðC�Þ�1 : Ar : C; ð15Þ
where C and C* are the orthotropic and isotropic constitutive
tensors defined in the real and mapped space, respectively.

Eq. (15) allows us to derive the relationship between the
constitutive tensors in the real and mapped spaces:

C ¼ ðArÞ�1 : C� : Ae
: ð16Þ

The constitutive tensor C is expressed in the global reference
system. This means that prior to the derivation of the space trans-
formation tensors, the following transformation is required:

Cijkl ¼ rpirqjrrkrslC
0
pqrs: ð17Þ
3. Underlying damage model

In this section, the description of the CDM model adopted in the
mapped space is provided. The present work makes use of the
Tension–Compression Damage Model which has been extensively
used [47–54]. This model is characterized by two internal scalar
variables, which monitor the local damage under tension and com-
pression, respectively. The overall nonlinear behaviour is repro-
duced including unilateral effects, strain-hardening/softening
response, stiffness degradation and regradation under multiple
stress reversal.

We recall that in the ensuing lines, apex (�) is assigned to vari-
ables related to the mapped space. It is worth noticing that the
auxiliary properties, i.e. f��ij and elastic constants in tensor C*, can
be selected arbitrarily, since they disappear at the end of the map-
ping procedure to the auxiliary space and back to the real one.

3.1. Constitutive equations

The Tension–Compression Damage Model adopted in the
mapped space is based on a split of the effective stress tensor [56]

�r� ¼ C� : e� ð18Þ

into tensile and compressive components, �rþ� and �r��, in order to
account for different behaviours of masonry in tension and com-
pression. According to (3) and (4) it results that:

�rþ� ¼
X3

j¼1

�r�j
D E

p�j � p�j ; ð19Þ

�r�� ¼ �r� � �rþ�; ð20Þ

where �r�j denotes the jth principal stress value from tensor �r� and
p�j represents the unit vector associated with its respective principal
direction.

The split shown by Eqs. (19) and (20) can also be expressed, in
compliance with (5) and (6), in the forms

�rþ� ¼ P� : �r�; ð21Þ
�r�� ¼ I� P�ð Þ : �r�; ð22Þ

where P* is a projection operator such that

P� ¼
X3

j¼1

H �r�j
� �

p�j � p�j � p�j � p�j : ð23Þ

The constitutive equation for the damage model is defined as

r� ¼ ð1� dþÞ�rþ� þ ð1� d�Þ�r��; ð24Þ
where we have introduced two internal variables, d+ and d�, the
damage indexes, each related with the sign of the stress and thus
with tension and compression. The internal damage variables are
equal to zero when the material is undamaged and equal to one
when it is completely damaged. Their definition and evolution are
detailed afterwards.

Owing to the scalar form of the damage variables d+, d� and to
the format of the presented constitutive law, Eq. (24) points out
that a split of tensor r* into tensile and compressive tensors rþ�

and r�� is implicit in the present formulation, that is,

rþ� ¼ ð1� dþÞ�rþ�; ð25Þ
r�� ¼ ð1� d�Þ�r��: ð26Þ

This relevant property emphasises that the adopted split of the
effective stress tensor leads in fact to a related dual split of the Cau-
chy stress tensor r*.

Although the Tension–Compression Damage Model has been
usually termed ‘‘isotropic’’ [47,49,52,54,57], it is possible to dem-
onstrate that the model is definitely orthotropic. In fact, by recall-
ing (21) and (22), (24) can be rewritten as follows:

r� ¼ ð1� dþÞP� : �r� þ ð1� d�Þ I� P�ð Þ : �r�;

r� ¼ ð1� dþÞP� þ ð1� d�Þ I� P�ð Þ
� �

: �r�;

r� ¼ I� dþP� � d� I� P�ð Þ
� �

: �r�
ð27a;b; cÞ

and therefore the constitutive relationship can assume the form

r� ¼ ðI� DÞ : �r�; ð28Þ

where

D ¼ dþP� þ d�ðI� P�Þ ð29Þ

is the fourth-order tensor which characterizes the state of damage.
As can be easily seen, such a tensor is not isotropic and entails
directional orthotropic damage. The dependence on principal direc-
tions of stress, expressed by operator P*, is relevant since we have
assumed the microcracks and microvoids to growth in different
manners under tensile or compressive stress states. If P* = I, a ten-
sile isotropic damage model is recovered, while if P* is a zero tensor,
we recover a compressive isotropic damage model.

Eq. (29) has a structure similar to (14), used to define the global
stress transformation tensor, thus a crucial relationship is empha-
sized. In fact, the stress transformation in the form (14) has been
hypothesized in order to be consistent with the constitutive law
to be adopted in the mapped space.

An important remark concerns the distinctive characteristic of
the mapped space adopted in the proposed Two-Parameters Dam-
age Model for Orthotropic Materials. The concept of mapping a real
anisotropic space into an auxiliary isotropic one, as proposed by
Betten [41,42] and Oller et al. [43–45], is not feasible in the pre-
sented new framework. In fact, in this particular case the mapped
space cannot be termed ‘‘isotropic’’, since we assume an orthotro-
pic damage constitutive law and also a composite damage crite-
rion. Therefore, the present methodology turns the original
concept of ‘‘mapping the real space into an isotropic auxiliary
one’’ into the innovative and more general one of ‘‘mapping the
real space into a favourable (or convenient) auxiliary one’’ [46].

3.2. Damage surfaces in the mapped space

Individual criteria for tension and compression have to be con-
sidered in the mapped space, in order to describe different failure
mechanisms for masonry. The first criterion is associated with a
localized fracture process, namely cracking of the material, and
the second criterion is associated with a more distributed fracture
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process, viz. crushing of the material. The two damage criteria Uþ�

and U�� are defined as follows:

Uþ�ðsþ�; rþ�Þ ¼ sþ� � rþ� 6 0; ð30Þ
U��ðs��; r��Þ ¼ s�� � r�� 6 0: ð31Þ

As shown, since a clear distinction between tension and compres-
sion is assumed by means of the stress split defined in (19) and
(20), a tensile equivalent stress sþ� and a compressive equivalent
stress s�� have been postulated [47–54] to identify loading, unload-
ing or reloading situations [58].

Variables rþ� and r�� are the internal stress-like variables repre-
senting the current damage thresholds in tension and compression.
Their values control the size of each (monotonically) expanding
isotropic damage surface. Notice that the damage criteria are de-
fined in terms of effective stresses. This strategy preserves the
advantages of a strain-driven formulation, since the effective stress
tensor is itself a strain-based entity, and circumvents the draw-
backs inherent to those formulations based on the final Cauchy
stress tensor, which require an iterative procedure inside the con-
stitutive model, see [49].

The Kuhn–Tucker relations and the damage consistency condi-
tions control the evolution of the damage bounding surfaces for
loading, unloading and reloading conditions

_r�� P 0; U�� s��; r��
� �

6 0; _r�� �U�� s��; r��
� �

¼ 0;

if U�� s��; r��
� �

¼ 0 then _r�� � _U�� s��; r��
� �

¼ 0
ð32a;bÞ

leading, in view of (30) and (31), to the loading conditions

_s�� ¼ _r��: ð33Þ

Therefore, the current values of the internal variables r�� are ex-
pressed in terms of the current values of sþ� and s��, and more pre-
cisely in the following form:

r�� ¼max r��0 ;maxðs��Þ
� �

; ð34Þ

where r��0 ¼ r��0 ðf��Þ are the initial values of the damage thresholds
and f�� are the peak uniaxial strengths.

In the present work, the isotropic Rankine criterion is assumed
in the mapped space for tensile stress states. Therefore, the tensile
equivalent stress is defined as

sþ� ¼ �r�1
� 	

; ð35Þ

where �r�1 is the largest principal effective stress. The initial value of
the damage threshold is

rþ�0 ¼ fþ� ð36Þ

where fþ� is the peak uniaxial tensile strength.
For compressive stress states, the isotropic criterion proposed

by Faria et al. [48,49] is assumed in the mapped space. In this case,
the equivalent stress is defined in the following form:

s�� ¼
ffiffiffi
3
p

K �r��oct þ �s��oct

� �
: ð37Þ

In this format, directly inspired on the Drucker–Prager criterion, �r��oct

and �s��oct are the octahedral normal stress and the octahedral shear
stress obtained from �r��. Constant K controls the aperture of the
inherent Drucker–Prager cone. According to (34) and (37), the ini-
tial value of the damage threshold is equal to

r��0 ¼
ffiffiffi
3
p

3
K �

ffiffiffi
2
p� �

f��: ð38Þ
Fig. 2. Evolution laws for damage indexes and total stresses: (a) uniaxial tension
and (b) uniaxial compression.
3.3. Evolution of the damage variables. Inelastic behaviour

In the present model, the damage variables dþ ¼ dþðrþ�Þ and
d� ¼ d�ðr��Þ are computed according to the evolution laws pro-
posed in [53,54]. Two distinct monotonically increasing functions
are assumed such that 0 6 d±

6 1. In tension the softening law
takes the exponential form

dþðrþ�Þ ¼ 1� rþ�0

rþ�
exp 2Hþ�dis

rþ�0 � rþ�

rþ�0

� � �
; ð39Þ

where the discrete softening parameter Hþ�dis P 0 is defined as

Hþ�dis ¼
ldis

lþ�mat � ldis
ð40Þ

The discrete crack characteristic width ldis is related to the discrete
FE problem and will be detailed in the following. The material char-
acteristic length lþ�mat depends only on material mechanical proper-
ties and it is defined as

lþ�mat ¼
2E�Gþ�f

ðfþ�Þ2
: ð41Þ

Since the internal variables and the stresses depend both on strains
according to (25) and (34), it is possible to define the rþ�ðrþ�Þ and
dþðrþ�Þ relationships for a simple uniaxial tensile problem under
monotonically increasing strain, see Fig. 2a. Once the tensile
strength fþ� is reached, the material begins to soften according
to the exponential law (39) and the tensile damage index d+

increases.
A different law is considered for damage variable d�, in order to

represent the peculiar compressive inelastic behaviour of masonry,
see Fig. 2b. The blue line is the piecewise function assumed in this
work for r��ðr��Þ in the case of uniaxial compression. Let us intro-
duce f��0 ¼ gf��, with 0 6 g 6 1, which denotes the stress value at
the onset of damage. In such a condition, the size of the bounding
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damage surface is established by the value r��0 . Then, we define the
value r��e ¼ r��0 =g and the value r��p P r��e which corresponds to the
size of the bounding damage surface at peak strength f��. Note that
r��p P r��e P r��0 . These terms are necessary to define the harden-
ing/softening response of masonry, which is characterized by a
limited ductility in compression. Accordingly, a piecewise function
is assumed for d�ðr��Þ, see the green line in Fig. 2b. For parabolic
hardening we assume

d�ðr��Þ ¼ A�d
r��e

r��
r�� � r��0

r��p � r��0

 !2

; r��0 6 r�� 6 r��p ð42Þ

while for the consequent exponential softening

d�ðr��Þ ¼ 1� r��e

r��
exp 2H��dis

r��p � r��

r��e

� � �
; r�� P r��p ; ð43Þ

where constant A�d and the discrete softening parameter H��dis P 0 are
defined as

A�d ¼
r��p � r��e

r��e
; ð44Þ

H��dis ¼
ldis

l��mat �
r��p

r��e
ldis � 2A�dldis

ð45Þ

and

A�d ¼ A�d r��p

� �3
� 3r��p þ 2

� ��
6r��e r��p � 1

� �2
� �

; ð46Þ

l��mat ¼
2E�G��f

ðf��Þ2
: ð47Þ

In Eqs. (40) and (45) ldis is the discrete crack characteristic width, i.e.
the computational width of the fracture zone in the discrete FE
problem, which depends on the finite element size [59]. It has been
introduced to regularize the softening modulus, in order to ensure
mesh-size objective results, according to [60]. Therefore, the spe-
cific dissipated energies Dþ� and D�� are scaled for each element
so that the following equations apply:

Dþ�ldis ¼ Gþ�f ; D��ldis ¼ G��f : ð48a;bÞ

Finally, it is worth mentioning that the analytical derivation of the
damaging tangent constitutive tensor for this model is not straight-
forward. A practical option for such derivation is the numerical dif-
ferentiation procedure outlined in Refs. [61,62].
4. Damage in the real orthotropic space

4.1. Damage surfaces in the real orthotropic space

In Section 3.2 we have presented the two isotropic damage
criteria to be assumed in the mapped space. The expressions (35)
and (37) represent the equations of two three-dimensional sur-
faces defined in the coordinates system denoted by axes
r�x; r�y; s�xy.

Transformations of stresses (8) and (9) allow us to scale in
distinct manners the two isotropic failure surfaces assumed in
the mapped space. By means of such a mapping operation, shown
in Fig. 3, the desired real orthotropic criteria are reproduced in the
coordinate system denoted by axes rx, ry, sxy. The corresponding
orthotropic composite failure surface is reported in Fig. 4.

Due to the choices of the Rankine and Faria isotropic criteria in
the mapped space, the stress transformation tensors components,
which have been defined for the general case in (10), are defined
as follows:
Arþ
1111

0 ¼ fþ�=fþ11;

Arþ
2222

0 ¼ fþ�=fþ22;

Arþ
1212

0 ¼ Arþ
1221

0 ¼ fþ�= 2fþ12

� �
;

Arþ
2112

0 ¼ Arþ
2121

0 ¼ fþ�= 2fþ12

� �
;

Arþ
1122

0 ¼ Arþ
1112

0 ¼ Arþ
1121

0 ¼ 0;

Arþ
2211

0 ¼ Arþ
2212

0 ¼ Arþ
2221

0 ¼ 0;

Arþ
1211

0 ¼ Arþ
1222

0 ¼ Arþ
2111

0 ¼ Arþ
2122

0 ¼ 0;

ð49Þ

Ar�
1111

0 ¼ f��=f�11;

Ar�
2222

0 ¼ f��=f�22;

Ar�
1212

0 ¼ Ar�
1221

0 ¼ f��
ffiffiffi
2
p
� K

� �. ffiffiffi
6
p ih .

2f�12

� �
;

Ar�
2112

0 ¼ Ar�
2121

0 ¼ f��
ffiffiffi
2
p
� K

� �. ffiffiffi
6
p ih .

2f�12

� �
;

Ar�
1122

0 ¼ Ar�
1112

0 ¼ Ar�
1121

0 ¼ 0;

Ar�
2211

0 ¼ Ar�
2212

0 ¼ Ar�
2221

0 ¼ 0;

Ar�
1211

0 ¼ Ar�
1222

0 ¼ Ar�
2111

0 ¼ Ar�
2122

0 ¼ 0:

ð50Þ

The choices of fþ� and f�� are arbitrary, as explained in Section 3. It
is advisable to assume fþ� ¼ fþ11 and f�� ¼ f�11, in order to obtain
Arþ

1111
0 ¼ Ar�

1111
0 ¼ 1. Such an assumption leads to scale the isotropic

criteria only along the second and third cartesian axes, see Fig. 3.
It is evident that the transformation of space is feasible only if we
know all the six parameters fþ11; f�11; fþ22; f�22; fþ12; f�12 , i.e. the
strengths of the real orthotropic material. Such parameters also rep-
resent the intersections of the real failure surfaces with the carte-
sian axes, see Fig. 3. They can be derived from the experimental
tests on masonry wallets proposed in [63] or from homogenization
procedures, as already stressed in Section 1.

As stated in Section 3.2, constant K controls the aperture of the
Faria’s surface in the mapped space, see Eq. (37). In the new pro-
posed framework, such parameter can be also considered as a fit-
ting parameter of the real failure surface, being related to the
real biaxial compressive strength f�2D according to

K ¼
ffiffiffi
2
p f�2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f�11ð Þ
2 þ 1

f�22ð Þ
2 � 1

f�
11

1
f�
22

r
� 1

f�2D
1

f�11
þ 1

f�22

� �
� 1

ð51Þ

which for f�11 ¼ f�22 leads correctly to the original isotropic expres-
sion of K, reported in [48].

4.2. Orthotropic softening behaviour

The model presented in this work is able to describe indepen-
dent softening behaviour along orthogonal directions, an option
typical in masonry macro-modelling [19,63,64].

If the real material is modelled as isotropically softening,
according to Eqs. (40) and (41) and (45)–(47) it must result that

2E�G��f

f��ð Þ2
¼

2E1G�f ;1
f�11

� �2 ¼
2E2G�f ;2

f�22

� �2 ) l��mat ¼ l�mat;1 ¼ l�mat;2: ð52Þ

The choice of E�; f��; G��f is arbitrary and so l��mat . As already stressed
in Section 4.1, it is advisable to assume the mechanical properties in
the mapped space such that E� ¼ E1; f�� ¼ f�11; G��f ¼ G�f ;1. In this
case, it derives from (52) that

G�f ;2 ¼
f�22=f�11

� �2

E2=E1
G�f ;1; ð53Þ

i.e., a restriction on the fracture energy values in the real space, in
order to ensure isotropic softening.



Fig. 3. Adopted failure loci in the mapped space (a) and in the real orthotropic space (b).
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The proposed model can also include the description of the
orthotropic softening behaviour, which is thought in the sense that
the material properties involved in the definition of the expression
d� ¼ d�ðr��Þ are directionally dependent. More generally, the rate
of the damage indexes

_d� ¼ @d�

@r��
_r�� ð54Þ

is such that @d�=@r�� depends on the physical directions. As r�� is
assumed to behave isotropically and changing such assumption
would spoil most of the advantages of the approach, an obvious
alternative is to modify @d�=@r�� directionally. This procedure
‘‘breaks’’ in some way the basic idea of ‘‘isotropy’’ in the mapped
space and it is carried out in a heuristic manner, by using an appro-
priate directional interpolation between the known values for
lengths l�mat;1 and l�mat;2. Accordingly, it is possible to represent the
orthotropic softening behaviour assuming in the mapped space
the following expression for l��mat instead of (52):

1

l��mat

� �2 ¼
1

l�mat;1

� �2 cos2 a� hð Þ þ 1

l�mat;2

� �2 sin2ða� hÞ ð55Þ
in which h is the angle of orthotropy and a is the angle denoting the
direction of the main stress characterized by the maximum abso-
lute value. Both the angles are measured counter clockwise from
the global x-axis to the material 1-axis. Expression (55) corresponds
exactly to an elliptic interpolation of lengths l�mat;1 and l�mat;2 and
leads correctly to isotropic softening in case of l�mat;1 ¼ l�mat;2. Accord-
ingly, two different softening behaviours can be assumed along the
material axes. It suffices to choose the following properties in the
mapped space:

E� ¼ E1;

f�� ¼ f�11;

G��f ¼
ðf��Þ2

2E�
l��mat:

ð56a;b; cÞ

The presented procedure permits to account for totally different
fracture energies along the material axes, providing a full orthotro-
pic softening behaviour. A more fundamental approach would be to
define another different mapping between the spaces of the inelas-
tic strains.

The proposed procedure is combined with the regularization
presented in Section 3.3 in order to ensure the consistency of the



Fig. 4. Orthotropic composite failure surface.

Fig. 5. Uniaxial behaviour of the model: (a) tension, (b) compression and (c) cyclic
displacement history.
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discrete constitutive model with the continuum one, avoiding the
mesh size-dependency. The problem of mesh bias-dependency is
more general and out of the scope of this paper. In the last three
decades, the problem of mesh-bias dependence has been tackled
with different approaches (micropolar [65], non-local [66], gradi-
ent-enhanced models [67], etc.) which share the standpoint that
the original continuum model is not well-posed and it should be
modified from the basic, physical, level. This means incorporating
the underlying physical collapse mechanism in the formulation.
Alternatively, the same problem can be addressed satisfactorily
from the numerical point of view in the framework of the defini-
tion of the discrete problem associated to crack modelling. The
interested reader is referred to [68–73] for details.

As already stressed in Section 1, the degradation in masonry is
generally anisotropic and thus it is recognized that the presented
approach with orthotropic softening is an approximation. Multi-le-
vel or multi-scale methods are able to include the anisotropic evo-
lution of damage depending on the underlying mechanism,
although increasing the computational cost. To the authors’ knowl-
edge, closed-form macro-models for masonry combining elastic
and strength orthotropy with anisotropic degradation are not cur-
rently available.
4.3. Inelastic uniaxial behaviour

The uniaxial behaviour of the model is shown in Fig. 5. The con-
sidered material properties are listed in Table 1. It can be noticed
that the relationship between the fracture energies do not conform
with restriction (53). Therefore, the brittleness of the material is
not the same along each direction, either in compression or in ten-
sion. A tensile exponential softening law is considered, and such a
choice is sound for a quasi-brittle material like masonry. Once the
fracture energy is exhausted, a no-tension material is recovered.



Table 1
Material properties for uniaxial tension/compression test.

Material properties

E1 = E* 3000 MPa fþ11 ¼ fþ� 0.35 MPa f�1 ¼ f�� 7.00 MPa
E2 2000 MPa fþ22 0.15 MPa f�2 3.00 MPa
v12 = v* 0.1 fþ12 0.20 MPa f�12 3.00 MPa
v21 0.15 Gþf ;1 ¼ Gþ� 100 J/m2 G�f ;1 ¼ G�� 40,000 J/m2

G12 900 MPa Gþf ;2 13.8 J/m2 G�f ;2 5510 J/m2
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The material strength in the y-direction degrades at a faster rate
than the material strength in the x-direction, see Fig. 5a. The re-
sponse for the angle of orthotropy h = 45� is also reported.

Parabolic hardening followed by exponential softening is con-
sidered for the stress–strain diagrams in compression, see Fig. 5b.
The peak strength value is assumed to be reached simultaneously
on both material axes, i.e. isotropic hardening, followed by ortho-
tropic softening as determined by the different fracture energies.
The model allows us to set an ultimate value of the strain, from
which the material begins to soften.

The dissimilar behaviour exhibited by masonry under tension
or under compression is an essential feature when dealing with
cyclic actions. Fig. 5c shows the cyclic response along the material
direction 1. As it can be seen, unloading occurs to the origin of the
stress–strain diagram, according to a damaged stiffness. A succes-
sive reloading follows the same unloading branch, until the dam-
age threshold is reached again. When reversing the sign of the
external loading, the constitutive model is able to capture the uni-
lateral behaviour exhibited by masonry and distinguish tension
from compression. This is due to the stress split described by
Eqs. (19) and (20) and to the definition of two different variables
to describe tensile and compressive damage, see Eq. (24). The
stiffness recovery upon loading reversal can be represented. For in-
stance, when passing from tension to compression, the model ac-
counts for the crack closure phenomenon in masonry.

5. Validation examples

In this section, the capability of the proposed model to repro-
duce the strength of different masonry types is demonstrated
through a comparison with available experimental data on
masonry panels subjected to in-plane loading conditions.

5.1. Simulation of experimental tests conducted by Page

In the early 1980s, Page published the results of a series of tests
designed to assess the directional strength characteristics of
Fig. 6. Comparison among the experimental results from Page [13,14], the proposed mo
(b) h = 22.5� and (c) h = 45�.
masonry panels subjected to in-plane monotonic loading. For that
purpose, he conducted a series of biaxial compression–compres-
sion [13] and biaxial tension–compression [14] tests, which still
are the most comprehensive experimental program conducted on
the in-plane behaviour of brick masonry. The test specimen con-
sisted of a 360 � 360 � 54 mm3 panel of running bond brick ma-
sonry constructed by adhering the bricks in their designated
place to a temporary plate, and then pouring in mortar. A total
number of 102 panels were tested. Half-scale bricks were used,
where the actual bricks were cut in half in all three dimensions,
in order to obtain 115 � 40 � 54 mm3 elements. In the corners,
each individual brick was sawn to the appropriate shape required
to fit the designated angle. The specimens were subjected to a
biaxial load-controlled test in a load rig. In order to alleviate the
restraining effect of the loading caps, a series of brush platens were
used to transfer the load to the panel. The tests were conducted for
five different orientations, 0�, 22.5�, 45�, 67.5� and 90�, of the
principal stress with respect to the direction of the mortar beds.
The results from all orientations were then gathered to obtain a
comprehensive picture of the directional strength characteristics
of brick masonry.

The panels were loaded proportionally in the principal stress
directions r1 and r2 along different orientations h with respect
to the material axes.

The values assumed for orthotropic strengths are fþ11 ¼
0:43 MPa; fþ22 ¼ 0:32 MPa and fþ12 ¼ 0:33 MPa for tension and
f�11 ¼ 8:74 MPa; f�22 ¼ 8:03 MPa and f�12 ¼ 2:71 MPa for compres-
sion, according to data given in [14] and parameters calibrated in
[63]. The parameter K of Eq. (37) has been considered equal to
0.027, in order to fit accurately the experimental data. The compos-
ite damage criterion features a low degree of anisotropy (fþx =fþy ¼
1:34 and f�x =f�y ¼ 1:09Þ. For all the tests, the material properties
in the 1-axis have been selected for the mapped space.

Fig. 6a–c shows the comparison among the experimental
strength values and the failure surfaces corresponding to orienta-
tions of the bed joints equal to 0�, 22.5� and 45�, respectively. For
the sake of comparison, the failure loci derived by Syrmakezis
and Asteris [18] and Lourenço et al. [63] are also depicted. Such
models require respectively ten and seven parameters to be
defined. The former approach provides a rather adjustable single
surface but overestimations are evident along some loading paths.
More accurate results are obtained globally with the latter model,
thanks to its two surfaces-format, even though some overestima-
tions are encountered. A remarkable agreement is obtained using
the proposed model, except for the uniaxial compressive strength
parallel to the bed joints which seems to be overpredicted,
see Fig. 6a. This is due to a debatable definition of failure in the
del, the models by Lourenço et al. [63] and Syrmakezis and Asteris [18]: (a) h = 0�;



Fig. 7. Comparison between the proposed model and the experimental results from Ganz and Thürlimann [75]: calculated composite failure surface (a) and comparisons with
tests K1 (b), K2 (c), K6 (d), K7 (e), K8 (f), K11 (g) and K12 (h).
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Table 2
Comparison between the proposed model and the experimental results obtained by Ganz and Thürlimann [75].

Panel Experimental results Present model Ratio

rx (MPa) ry (MPa) sxy (MPa) rx (MPa) ry (MPa) sxy (MPa)

K1 �0.08 �0.92 0.42 �0.08 �0.92 0.44 0.99
K2 �0.17 �1.42 0.62 �0.17 �1.42 0.61 1.00
K3 0.00 �7.63 0.00 0.00 �7.63 0.00 1.00
K4 �1.83 0.00 0.00 �1.83 0.00 0.00 1.00
K6 �0.32 �0.32 0.32 �0.32 �0.32 0.34 0.98
K7 �0.39 �2.25 0.93 �0.39 �2.25 0.94 1.00
K8 �0.22 �0.04 0.09 �0.22 �0.04 0.12 0.95
K10 �2.11 �6.44 0.00 �2.15 �6.44 0.00 1.00
K11 �2.04 �4.49 1.23 �2.04 �4.49 1.39 0.99
K12 �2.03 �2.03 1.08 �2.03 �2.03 0.69 1.04

Fig. 8. Comparison between the proposed model, the damage domain formulated by Berto et al. [19] and the experimental results from Lurati et al. [76]: composite failure
surface (a) and comparisons with tests ZSW5 (b), ZSW6 (c), ZSW8 (d) and ZSW9 (e).
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experiments for these loading conditions (early splitting of the bed
joints in tension), see [15]. In fact, the individual ‘‘piers’’ of ma-
sonry formed after splitting of the bed joints can withstand a much
higher load before collapse is obtained.

Similarities of the proposed composite failure surface with the
one by Lourenço et al. are observed. Nevertheless, the Two-
Parameters Damage Model that has been presented is more
advantageous, because of its intrinsic simplicity. The favourable
strain-driven format provides robustness and high algorithmic
efficiency, avoiding the problem of possible ill-conditioning of
the return-mapping algorithm in stress-driven orthotropic plastic-
ity models [74].

5.2. Simulation of experimental tests conducted by Ganz and
Thürlimann

A smaller testing program of biaxially loaded masonry panels
was carried out at ETH Zurich. The panels, with dimensions
1200 � 1200 � 150 mm3, were loaded proportionally in the princi-
pal stress directions r1 and r2 along different orientations h with
respect to the material axes as defined previously. The 12 panels
of hollow clay brick masonry, denoted by panels K1 to K12 and
reported by Ganz and Thürlimann [75], are considered.

The values assumed for real strengths are fþ11 ¼ 0:28 MPa,
fþ22 ¼ 0:01 MPa and fþ12 ¼ 0:04 MPa for tension and f�11 ¼ 1:83 MPa;
f�22 ¼ 7:63 MPa and f�12 ¼ 3:41 MPa for compression. The parame-

ter K has been considered equal to 0.072. All the aforementioned
values have been selected according to data given in [75] and
parameters calibrated in [63]. The composite damage criterion fea-
tures a high degree of anisotropy ðfþx =fþy ¼ 28 and f�y =f�x ¼ 4:17Þ.
These high ratios are due to the high perforation of the clay bricks.
For all the tests, the material properties in the 1-axis have been se-
lected for the mapped space. Fig. 7a shows the shape of the
adopted composite damage criterion both with the points repre-
senting the set of strength experimental data.

The test results, the proposed model results and the ratio be-
tween experimental and predicted failure are given in Table 2. No-
tice that this ratio is a measure of the norm of the stress vector in

the ðrx;ry; sxyÞ-space which equals r2
x þ r2

y þ s2
xy

� �1=2
. Panels K5

and K9 are not included because the boundary conditions affected
the failure mode of panel K5 and panel K9 included reinforcement.

The model is able to reproduce the strength behaviour of this
type of anisotropic masonry with good accuracy. The error is
bounded by a maximum value of 5%, corresponding to test K8.
The mean of the ratios results equal to 0.995.

For the sake of completeness, Fig. 7b–h report, for each test, the
comparison between the point of coordinates rx,u, ry,u, sxy,u, which
denote the experimental failure conditions, with the section of the
composite damage surface at a constant value of ry,u. These figures
help to understand better how the proposed methodology models
the shear strength behaviour of this type of masonry. It appears
Table 3
Comparison between the proposed model and the experimental results obtained by Lurat

Panel Experimental results

rx (MPa) ry (MPa) sxy (MPa)

ZSW1 0.00 �9.12 0.00
ZSW2 �6.12 �0.83 0.00
ZSW4 �5.98 �9.13 0.00
ZSW5 �3.06 �3.06 3.06
ZSW6 �4.60 �4.60 2.93
ZSW7 �6.12 �6.12 0.00
ZSW8 �2.34 �0.40 0.97
ZSW9 �0.97 �5.66 2.35
that the tension regime represents the majority of the composite
damage surface domain.

5.3. Simulation of experimental tests conducted by Lurati et al.

The nine panels of hollow concrete block masonry, denoted by
panels ZSW1 to ZSW9 and tested by Lurati et al. [76] as a part of
the ETH Zurich program, are considered next. Panel ZSW3 is not
considered because the head joints were not filled.

The values assumed for real strengths are fþ11 ¼ 0:01 MPa;
fþ22 ¼ 0:01 MPa and fþ12 ¼ 0:01 MPa for tension and f�11 ¼ 5:78
MPa; f�22 ¼ 9:12 MPa and f�12 ¼ 3:98 MPa for compression. This
type of masonry is practically a no-tension material. The parameter
K has been considered equal to 0.0. All the aforementioned values
have been selected according to data given in [76] and parameters
calibrated in [63]. The composite damage criterion features a rea-
sonable degree of anisotropy in compression, with f�y =f�x ¼ 1:58.
For all the tests, the material properties in the 1-axis have been se-
lected for the mapped space. Fig. 8a shows the shape of the
adopted composite damage criterion both with the points repre-
senting the set of strength experimental data. For the sake of com-
parison, the damage domain formulated by Berto et al. [19] is also
reported.

The test results, the proposed model results and the ratio be-
tween experimental and predicted failure are given in Table 3. This
ratio is again a measure of the norm of the stress vector in the

ðrx;ry; sxyÞ-space which equals r2
x þ r2

y þ s2
xy

� �1=2
.

The model is also able to reproduce the strength behaviour of
this type of anisotropic masonry with good accuracy. The error is
bounded by a maximum value of 7%, corresponding to test
ZSW7. The mean of the ratios results equal to 0.993.

For the sake of completeness, Fig. 8b–e report, for each test, the
comparison between the point of coordinates rx,u, ry,u, sxy,u, which
denote the experimental failure conditions, with the section of the
composite damage surface at a constant value of ry,u. As can be
seen, the proposed model is able to capture the correct shear
strength of this orthotropic masonry. As shown by Fig. 8c–e, the
damage domain formulated by Berto et al. leads to conservative
values and cannot model the increase of strength in biaxial com-
pression, since the failure surface is defined as a simple straight-
sided rectangle in the rx � ry plane.

6. Conclusions

In this paper, a plane-stress macro-model for orthotropic ma-
sonry has been presented.

The proposed model is capable of modelling:

	 the elastic orthotropy of the intact material;
	 different strength along the two natural directions of masonry,

parallel and orthogonal to the mortar joints;
i et al. [76].

Present model Ratio

rx (MPa) ry (MPa) sxy (MPa)

0.00 �9.12 0.00 1.00
�6.01 �0.83 0.00 1.02
�5.76 �9.12 0.00 1.01
�3.06 �3.06 3.07 1.00
�4.60 �4.60 3.06 0.99
�6.60 �6.60 0.00 0.93
�2.34 �0.40 0.98 1.00
�0.97 �5.66 2.36 1.00
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	 different softening behaviour along these two directions;
	 the dependence of the response on the inclination of the natural

axes of the material;
	 the unloading (and reloading) depending on the damaged

stiffness;
	 the stiffness recovery at crack closure under alternate loading.

The damage model is based on the concept of mapped tensor
from the orthotropic real space. A one-to-one mapping relationship
is established between the orthotropic behaviour and an auxiliary
model. The problem is solved in the mapped space and the results
are transported to the real field.

In order to account for different behaviour in tension and com-
pression, the relationship between the two spaces is defined by
means of two transformation tensors, which are related to tensile
stress states and compressive stress states, respectively. Such an
enhancement of the original Betten’s model permits to reproduce
different ultimate behaviours in tension and compression by con-
sidering two distinct isotropic criteria in the mapped space. Each
of them describes different failure mechanisms. The first criterion
is associated with a localized fracture process, namely cracking of
the material, and the second criterion is associated with a more
distributed fracture process, i.e. the crushing of the material. In this
study, a Rankine criterion for tension and a Faria criterion in com-
pression have been selected for the mapped space.

It is possible to adjust the two assumed isotropic criteria to the
particular behaviour of the orthotropic material. In fact, the two
distinct transformations allow us to scale in distinct manners the
two isotropic failure surfaces assumed in the mapped space. The
result is an implicit composite failure surface defined in the real
space.

The constitutive model assumed in the mapped space is the
Tension–Compression Damage Model [47–54]. An essential feature
of the proposed model is that a split into tensile and compressive
contributions is introduced. The model includes different harden-
ing/softening behaviour for tension and compression. The damage
variables are related by an equivalent length to the released energy
per unit cracked area.

The orthotropic nature of the Tension–Compression Damage
Model adopted in the mapped space has been demonstrated,
although it has usually been termed as ‘‘isotropic’’ in the available
literature. This feature, both with the assumption of two distinct
damage criteria for tension and compression, does not permit to
term the mapped space as ‘‘isotropic’’. Therefore, the present meth-
odology turns the original concept of ‘‘mapping the real space into
an isotropic auxiliary one’’ into the innovative and more general
one of ‘‘mapping the real space into a favourable (or convenient)
auxiliary one’’.

The model has been fully formulated for the two-dimensional
case but it can be easily extended to the three-dimensional one
by providing additional material parameters [45].

The strength parameters involved appear to be enough to repro-
duce the biaxial failure of all masonry types, ranging from isotropic
to extreme anisotropic behaviours. This validation has been carried
out by means of comparisons with experimental results on differ-
ent types of orthotropic masonry. Compared to other existing
macro-models available in literature, the proposed strategy affords
an improved prediction of the experimental evidence with regard
to the obtained failure locus. A full appraisal of the directional
dependence of the softening behaviour still needs further
validation.
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