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a b s t r a c t

This work presents a procedure to simulate the growth and propagation of localized tensile
cracks on quasi-brittle materials. The so-called smeared damage approach, which consists
in standard finite elements and local nonlinear constitutive laws, is recovered and
improved in order to represent crack localization and avoid spurious mesh-bias depen-
dence in the discrete problem. This is achieved by means of the implementation of a local
crack-tracking algorithm which can reproduce individual (discrete) cracks and ensure
objectivity of the finite element problem solution. The performance of the localized dam-
age model is stressed by means of the analyses of structural case-studies. Compared to the
Smeared Crack Approach in its original form, the presented procedure shows clearly a bet-
ter capacity to predict realistic collapse mechanisms. The proposed tracking technique is
relatively inexpensive.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical modelling of tensile cracking phenomena on quasi-brittle materials is one of the key topics in Computa-
tional Failure Mechanics. Two main difficulties have to be overcome in the discrete finite element (FE) problem: the repre-
sentation of the opening crack, both in terms of displacement and/or strain fields, and the prediction of the direction for
crack propagation.

With regard to the first issue, the most promising of the newly proposed methods are enhancements of the classical Dis-
crete Crack Approach (DCA) and Smeared Crack Approach (SCA) [1].

In the Elemental enrichment Finite Element Method (E-FEM) [2–6] the displacement field at the crack is assumed to be
discontinuous and the strain field is decomposed into a regular part, outside the crack, and a singular part at the crack. This,
together with the explicit control on the energy dissipated in the formation of the crack, represents a link with the estab-
lished tradition of fracture mechanics. Nevertheless, such approach does not really depart from the usual continuum
framework.

The eXtended Finite Element Method (X-FEM) [7–10], when combined with level sets [11], is able to represent the dis-
continuity geometry, the displacement field across the crack and the developed singular field at the crack tip in terms of no-
dal values at the nodes of the mesh. The accuracy and the versatility of the approach are remarkable but a disadvantage lies
in the special integration rules required inside the affected finite elements to account for what happens at and outside the
discontinuity. An exhaustive review about recent advances in X-FEM is reported in [12].
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It has been observed in [13] that the computational cost in X-FEM is higher than in E-FEM and it increases even more in
case of multiple cracks.

Integrated strategies with transition from Continuum Damage to macro-cracks simulated by means of X-FEM [14] or E-
FEM [15] have been also proposed in order to correct initial mispredictions of the crack direction during its evolution.

Other options have been recently investigated. On one hand, in [16,17] the displacement discontinuity is replaced with a
regularized approximation within the framework of the X-FEM. A meso-scale mesh-size independent ‘‘characteristic length”
related to the process zone width is introduced. Therefore, the displacement and strain fields at the crack are continuous
with continuous derivative, enabling one to adopt standard integration procedures instead of sub-elemental ones. On the
other hand, in [18,19] a smeared–embedded continuum crack model is presented which incorporates the effect of the dis-
placement jumps in the strain field of the elements, rather than the actual jumps themselves. Necessary corrections are
introduced in the model to avoid mesh-size and mesh-bias dependency. The solution for the latter drawback is found in
the form of a mesh corrected crack model, where the structure of the inelastic strain tensor is linked to the geometry of
the cracked element. Such approach can be considered a particular case of the classical SCA, implemented at constitutive
level.

Nomenclature

Ae finite element area
C isotropic linear–elastic constitutive tensor
d damage index
D specific dissipated energy
E Young’s modulus
f0 uniaxial tensile strength
Gf tensile fracture energy
he average element size
Hdis discrete softening parameter
Hmat material softening parameter
ldis discrete crack characteristic width
le finite element size
lmat material characteristic length
pi unit vector associated with ith principal direction
r damage threshold internal variable
rexcl exclusion radius
rneigh radius of the neighbourhood where Vc is computed
r0 initial value of the damage threshold internal variable
v Poisson’s ratio
Vc crack average direction vector
Vc,max vector which forms an angle amax with vector Vc

Ve crack direction vector for the current element
a angle between Vc and Ve

amax maximum curvature angle
e strain tensor
U damage criterion
K damage threshold surface shape tensor
r stress tensor
�r effective stress tensor
�rþ; �r� tensile and compressive effective stress tensors
�ri ith principal effective stress
s equivalent stress
: double contraction
h.i Macaulay brackets

Acronyms
CMOD crack mouth opening displacement
DCA Discrete Crack Approach
E-FEM Elemental enrichment Finite Element Method
FE finite element
FEM Finite Element Method
SCA Smeared Crack Approach
X-FEM eXtended Finite Element Method
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Figs. 1 and 2 sketch the comparison between the different approaches described, with relation to the crack modelling in
the discrete FE model. The differences among them are subtle when referred to a 1D situation, but the corresponding impli-
cations in 2D and 3D are significant, since it is necessary to establish the functional relationships between the fields of dis-
placements (continuous and discontinuous) and strains (bounded and unbounded), and then with those of stresses. The
displacement and strain fields at the crack represented by the strong discontinuity theories of E-FEM [2] and X-FEM [9]
are depicted in Fig. 1a, whereas their regularized versions are reported respectively in Fig. 1b and c. Oliver et al. [4] use a
‘‘small” regularization length to obtain a bounded strain field at the discontinuity defined in terms of the displacement jump,
measured as the difference of the displacement field at both sides of the band, see Fig. 1b. This length may decrease during
the deformation process according to an evolution law. Benvenuti [16] introduces a regularization length related to the
width of the process zone that remains constant during the dissipative process and inside which both the displacement

Fig. 1. Recent FEM approaches to crack modelling: (a) X-FEM/E-FEM without regularization; (b) regularized E-FEM [4]; (c) regularized X-FEM [16].

Fig. 2. SCA: (a) classical [1] and (b) embedded [18,19].
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and strain fields are continuous, see Fig. 1c. Such regularized versions of E-FEM/X-FEM recall, in a certain sense, the classical
SCA of Rashid [1], depicted in Fig. 2a, even if in this case the characteristic length is equal to the relevant dimension of the
finite element where the crack is to be represented. This similarity is exploited in the embedded SCA proposed by Cervera
[18,19], see Fig. 2b, where concepts developed for the E-FEM are incorporated in a SCA context.

With regard to the second issue mentioned at the beginning of this introduction, i.e. the prediction of the direction for
crack propagation, it is deemed as the main difficulty to be overcome in the discrete FE problem.

In the classical SCA it has always been implicitly assumed that the criterion for the onset of cracking, which is established
in terms of stresses/strains, also must automatically define the direction of propagation. This may be a natural assumption in
the continuous problem, with proper evaluation of stress and strain values and directions. However, in the discrete problem
the stress and strain fields evaluated in the vicinity of the crack tip differ greatly from being exact. Therefore, the computed
damage distribution is incorrect, as it depends spuriously on the alignment of the finite element mesh. This error must be
overcome if reasonable solutions are to be obtained with the SCA.

On the other hand, the application of E-FEM or X-FEM invariably needs the use of discontinuity tracking algorithms, in
order to establish which elements lie in the crack path and need to be enriched [20–23]. Successful applications of such tech-
niques point to the potential advantages of using a crack-tracking algorithm in the discrete format of the crack propagation
problem, also if continuous displacement fields are used in the interpolation basis.

The crack-tracking technique marks the finite elements which can damage and prevents the others from failing. This
essential feature

� minimizes the number of possible solutions, so it helps to identify the expected one;
� leads to a better representation of the expected solution for mixed-modes fracture problems, which are often character-

ized by curved cracks [24];
� avoids (or limits) the mechanical dissipation outside the crack track. A better description of the dissipative phenomenon

is achieved by forcing the crack to develop along a single row of finite elements, since the elemental softening parameter
is directly related to the fracture energy of the material.

The crack-tracking algorithm to be used in crack propagation problems must be consistently linked to the cracking cri-
terion, as this is the established cracking mechanism at continuum level. For a Rankine criterion based on the value of the
maximum tensile principal stress, it is consistent to assume that the crack propagates in the plane orthogonal to the corre-
sponding first stress eigenvector.

Non-local tracking strategies determine the crack path making reference not to local variables values but to their non-
local counterparts, accounting for the influence of the neighbourhood on a certain material point [25,26]. Non-local averag-
ing techniques are rather cumbersome since the modular element-wise nature of finite element analyses is spoiled. As a
consequence, the complexity of implementation is relatively high.

A global crack-tracking technique has been proposed by Oliver and co-workers [5,6] within the framework of E-FEM and
combined with the SCA by Cervera & Chiumenti [24,27] afterwards. Such a methodology considers the evaluation of the
propagation direction as a separate problem, independent from the local values of the discrete stress/strain fields. The direc-
tion of propagation is evaluated by solving a conduction-like problem which, by construction, is sufficiently well-behaved
and does not present any singular point in the vicinity of the advancing crack. However, the solution of such additional prob-
lem for each mechanical loading step involves some programming complexity and additional computational cost. As a rem-
edy for these drawbacks, a partial domain crack-tracking algorithm has been employed [15,28] in which the scalar field with
isolines is constructed only for the domain which actually is or potentially will be affected by the discontinuity. A practical
comparison between different crack path tracking techniques is reported in [29].

This work deals with an enhanced local crack-tracking algorithm, in which the propagation direction is evaluated locally
and corrected opportunely depending on potentially damaging and already damaged elements on the crack [30]. Such inno-
vative tool, combined with a continuum damage constitutive law with strain-softening, provides a numerical model for the
solution of problems involving tensile cracking in quasi-brittle materials, such as concrete and masonry [31]. Unlike with the
use of the standard SCA, the resulting damage in the ultimate conditions appears localized in individual cracks, represented
via continuous paths. Moreover, the results do not suffer from spurious mesh-size or mesh-bias dependence. The proposed
model requires less intensive computational effort than the similar one used in [24,27], which is based on a global crack-
tracking technique.

The paper is organized as follows: first, a brief review of the local continuum damage model is reported; then, the pro-
posed local crack-tracking technique is discussed in detail. Finally, the numerical tool is validated via the FE analyses of rel-
evant structural examples.

2. Local continuum damage model

In this work a constitutive model based on the continuum damage mechanics theory is considered. Since the adopted
formulation is mostly identical to the one described in [27], it will be briefly summarized hereinafter, referring the reader
to the cited paper for any further detail.
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2.1. Constitutive model

The constitutive equation for the damage model is defined as

r ¼ ð1� dÞ�r ¼ ð1� dÞC : e ð1Þ

where the effective stress �r [32] can be computed in terms of the total strain tensor e, C is the usual (fourth order) isotropic
linear-elastic constitutive tensor and d is the damage index, i.e. an internal-like scalar variable equal to zero when the mate-
rial is undamaged and equal to one when it is completely damaged.

As our aim is to use a scalar damage model sensitive only to tensile stresses contributions, a split of the effective stress
tensor into tensile and compressive components is carried out according to [33]:

�rþ ¼
X3

i¼1

h�riipi � pi and �r� ¼ �r� �rþ ð2Þ

where �ri denotes the ith principal stress value from tensor �r, pi represents the unit vector associated with its respective prin-
cipal direction and the symbols h.i are the Macaulay brackets ðhxi ¼ x; if x P 0; hxi ¼ 0; if x < 0Þ .

The scalar positive quantity, termed as equivalent stress s, is defined in order to identify ‘‘loading”, ‘‘unloading” or
‘‘reloading” situations for a general 3D stress state, according to:

s ¼ ½�rþ : K : �rþ�1=2 ð3Þ

The shape of the damage threshold surface in the effective stress space is defined by the non-dimensional fourth order
tensor K, which is assumed in this work equal to

K ¼ p1 � p1 � p1 � p1 ð4Þ

leading to the well-known Rankine criterion in tension.
If one designates by r the greatest values (here termed as threshold) ever reached until an instant t by the equivalent

stress s, increments of the damage variable d during time interval [t, t + Dt] are assumed to occur only when st+Dt > rt

(see [34] for details). Accordingly, the following damage criterion is introduced:

Uðs; rÞ ¼ s� r 6 0 ð5Þ

Based on Eqs. (3) and (5), the initial elastic domain is defined by the condition s = r0, where r0 = f0, being f0 the stress that
defines the onset of nonlinearity on 1D tension.

2.2. Strain softening and discrete crack width regularization

The damage index d = d(r) is explicitly defined in terms of the corresponding current value of the damage threshold r, so
that it is a monotonically increasing function such that 0 6 d 6 1. In this work, the softening law takes the following expo-
nential form [35]

dðrÞ ¼ 1� r0

r
exp 2Hdis

r0 � r
r0

� �� �
ð6Þ

where constant Hdis P 0 is the discrete softening parameter.
Since Bazant and Oh [36] it was recognized that the use of constitutive laws with softening in the SCA leads to solutions

strongly dependent on the mesh refinement. In order to ensure mesh-size objective results, the discrete softening law has to
be modified in such a way that the energy dissipated over a completely degraded finite element is equal to a given value,
which depends on the material fracture energy and on the element size. Accordingly, the specific dissipated energy D is ad-
justed for each FE in the crack band, so that the equation

Dldis ¼ Gf ð7Þ

applies, where Gf is the material tensile fracture energy and ldis is the discrete crack characteristic width, i.e. the computa-
tional width of the fracture zone. This can be derived according to the consistent methodology suggested by Oliver [37].

For the damage model with the exponential softening it can be proved that the specific dissipated energy is

D ¼ 1þ 1
Hdis

� �
ðf0Þ2

2E
ð8Þ

and, therefore, using (7) and (8) the discrete softening parameter is defined as

Hdis ¼
ldis

lmat � ldis
ð9Þ

where the material characteristic length is lmat = 1/Hmat, with Hmat = (f0)2/(2EGf) depending only on the material properties.
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It has to be remarked that this regularization procedure does not apply to the continuum format of the cracking problem.
If discontinuous displacements are considered in the continuous problem, the nonlinear constitutive behaviour can be estab-
lished in terms of a traction-vs.-jump law. If the discrete problem reproduces the displacement jumps, as it happens in the
E-FEM/X-FEM, then no regularization procedure is necessary (Fig. 1a), although it is also used in the regularized versions of
these formulations (Fig. 1b and c). Contrariwise, in the SCA, mesh-size regularization is necessary because of the smearing of
the displacement jump over the resolution length which the FE mesh is able to achieve (Fig. 2). Obviously, this only refers to
the discrete problem, and it depends on the element size. It is important to note that when the mesh is refined the contin-
uous constitutive model is recovered as a limit case.

In the framework of local models and FE analysis, the state variables are computed at the integration points in terms of
the local strain (and/or stress) history. Therefore, the discrete crack characteristic width is related to the volume (or area) of
each finite element [38]. For linear simplex elements, the discrete crack characteristic width can be taken as the represen-
tative size of the element, ldis = le. In this work, and assuming that the elements are equilateral, the size of the element will be
computed as l2

e ¼ ð4=
ffiffiffi
3
p
ÞAe for triangular elements.

3. Local crack-tracking technique

Although the problem of mesh-size dependence in SCA has been satisfactorily overcome, as mentioned in Section 2.2, the
issue concerning the mesh-bias dependence of the FE solution still remains unsolved. It is well-known that only if the spatial
discretization is designed in such way that an ‘‘appropriate” path for the advancing crack is available, the SCA solution results
satisfactory. In this work, a solution to the problem is found by making use of a crack-tracking technique.

The local crack-tracking algorithm detects the point where a crack is originated and then it lets the crack propagate per-
pendicularly to the trajectory of the first principal tensile stress. The algorithm marks the finite elements pertaining to the
crack path which can experience potential damage. The crack is forced to develop along a single row of finite elements. The
regularization procedure using the material properties and the element characteristic length ensures that dissipation will be
element-size independent, see Eq. (7).

The proposed method is applied at every time step during the analysis, just before the stress evaluation. The method
works with a flags system, where finite elements are labelled to delimit the zones where cracks will appear or develop.
The criteria used to define these zones depend on the magnitude and direction of the principal stresses at each element.
The algorithm has been implemented for 2D problems using three-noded standard elements with continuous displacement
field. Despite their well-known approximability limitations, constant strain-triangles ensure an efficient implementation.

The procedure is divided into two steps. First, new cracks are detected by checking the stress values at every finite ele-
ment located on the boundary of the structure. Then, the track of finite elements pertaining to the crack path is marked by
the algorithm, in order to compute the crack propagation direction.

3.1. New crack detection

The input data of this first stage of the procedure are: (i) the principal tensile stress values of the elements located on the
boundary of the mesh and (ii) the list of the elements labelled as ‘‘crack root”, all referred to the previous time step.

Then, the following operations are carried out:

1. New elements are labelled as potential crack roots. For this aim, we consider some criteria:
� the crack starts once the principal tensile stress value reaches the material strength, according to the Rankine tensile

criterion. This check is performed only on finite elements located on the boundary of the mesh. Therefore, cracks are
assumed to start only from the border of the structure.

� when several neighbour elements reach the tensile strength at the same time step, the exclusion radius criterion is
applied. This radius rexcl (defined by the user) is the minimum distance imposed between two crack root elements,
and it is used to guarantee the creation of separated discrete cracks. Among all the elements which have reached
the tensile strength at the same time step, and which are contained into the exclusion radius, the one with the greatest
principal tensile stress is labelled as crack root.

2. The spatial coordinates of the crack origin are computed. The midpoint of the element side located at the mesh boundary
is considered. In case of corner elements, the centroid is assumed, see Fig. 3.

The output data of the new cracks detection procedure is the list of the potential crack root elements, together with their
spatial coordinates.

3.2. Crack propagation

The input data of this second stage of the procedure are: (i) the list of the potential crack root elements, together with
their spatial coordinates, (ii) the principal tensile stress values and directions of all the mesh elements and (iii) the list of
the elements belonging to consolidated cracks referred to the previous time step.

2436 M. Cervera et al. / Engineering Fracture Mechanics 77 (2010) 2431–2450
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Then, the following operations are carried out:

1. Determine the ‘‘tip of the crack element” for each existing consolidated crack. This is defined as the damaged element
with only one neighbour damaged element.

2. For each tip of the crack element, as well as for the new crack root elements, the following processes are executed:
� Determine the exit point coordinates. A vector is drawn from the entry point coordinates (defined below), using the

direction perpendicular to the principal tensile direction of the element. The exit point is defined as the intersection of
that vector with the corresponding face of the element, see Fig. 4a.

� Determine the next potential element on the crack for the current time step. This is the neighbouring element whose
face in common with the current element corresponds with the face where its exit point is located. The element is
marked as a potential element belonging to this crack.

� Determine the entry point coordinates. The entry point of the new element on the crack is located at the same coor-
dinates of the exit point of the previous element, see Fig. 4b.

� Repeat the three previous steps, taking the new potential element as the crack tip element.

For each crack, the previous procedure is repeated until one of the following criteria is satisfied:

� Stress threshold criterion. Element tracking and labelling is stopped when the principal tensile stress is lower than a
threshold defined by the user. The experience has demonstrated that 75% of tensile strength usually works well.

� Crack meeting criterion. The procedure stops when a previously damaged element, or an element marked as a poten-
tially cracking one, is found along the current crack. This means that two cracks have met, and from then on they will
be considered as a single one.

� Boundary criterion. When the exit point of an element is on the boundary of the structure, the cracking process finishes.

Fig. 3. Location of cracks origin coordinates.

Fig. 4. Exit point of element I (a); new potential element J and its entry point (b).

M. Cervera et al. / Engineering Fracture Mechanics 77 (2010) 2431–2450 2437
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3. Once any of the previous criteria is reached, the current crack is considered totally developed and the next one is stud-
ied, by restarting the cycle. Finally, after applying this procedure to all the cracks, each element will have one of the
three following labels:
� Intact element, not able to damage (out of potential crack track; it will keep elastic behaviour during the current time

step)
� Intact element, able to damage (in a potential crack track; it will initiate inelastic behaviour if the material strength is

reached)
� Damaged element (belonging to a crack consolidated in previous time steps; it will develop inelastic behaviour during

the rest of the calculations)

The analysis procedure recognizes these labels and activates the corresponding constitutive law (elastic or damage) in
each element for the current time step. Also, once the stresses have been updated and the damaged indexes are known,
the elements with potential cracking that actually suffer damage are relabelled as included in a consolidated crack for the
rest of calculations. Finally, elements potentially cracking that do not actually suffer damage are restored to their original
status, i.e. unlabelled.

The proposed algorithm, based on the directions of the stresses in the previous time step, is of first order accuracy (the
error is proportional to the size of the time step). More accurate algorithms can be formulated. For instance, a second order
prediction on the stresses at the current time step can be done in terms of the stresses at the two previous time steps. Such
procedure would reduce the dependence of the computed crack track on the size of the time step significantly, particularly in
the case of curved crack trajectories.

3.3. Maximum curvature criterion

The implementation of the crack-tracking algorithm in the form described in Sections 3.1.1 and 3.1.2 leads to some prob-
lems in the case of bending stress states. Fig. 5 shows the FE simulation of an advancing flexural crack inside of a three point
loaded concrete beam. The contour of tensile damage is zoomed in the proximity of the neutral axes, as well as the tensile
principal directions. As can be seen, since the algorithm assumes the direction of the crack to be perpendicular to the prin-
cipal tensile stress, the track should propagate from the crack tip (element A) to element B and then to element C. This is
obviously erroneous, because the vertical crack should go up to the element D. Therefore, the local crack-tracking technique
needs a specific device to overcome such a drawback.

In this paper, the maximum curvature criterion is introduced in order to correct spurious changes of propagation direc-
tion. The procedure consists in identifying and correcting the sudden change of curvature in the crack track, before marking
each potential element. Making reference to Fig. 6a, the following parameters are considered:

� Crack direction vector for the current element Ve.
� Crack average direction vector Vc. It is equal to the vectorial sum of the elemental cracking vectors. The elements consid-

ered in the calculations are those potential at the current time step and those consolidated at the previous time steps
whose centroids lie inside a neighbourhood of radius rneigh. Such length is defined by the user and it is measured from
the centroid of the current tip element (see Fig. 6b).

Fig. 5. Crack ‘‘about-turn” in the proximity of the neutral axis, under bending conditions.
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� Angle a between Vc and Ve.
� Maximum curvature angle amax, defined by the user at the beginning of the calculations.
� Vector Vc,max which forms an angle amax with vector Vc.

If it results that a 6 amax, the considered element is marked as potential for the current time step with a corresponding
direction Ve. Then, the following element of the crack is considered.

If it results that a > amax, the crack direction is deflecting sharply (see Fig. 6a) and a correction is carried out, using Vc in-
stead of Ve. This means to impose the crack the average direction exhibited until the step considered with respect to a spec-
ified neighbourhood of radius rneigh (see Fig. 6b). In the case of problems involving straight or small curvature cracks, the
choice of rneigh obviously does not affect particularly the crack direction prediction. In the case of problems with curved
cracks, on the other hand, vector Vc has to be computed making reference to a limited number of FEs in order to simulate
correctly the curvature of the propagating crack. Therefore, the choice of rneigh may influence the results accuracy, as it will
be shown in Section 4.3.

Once the crack direction correction is carried out, the standard procedure is followed, i.e. the element is marked as po-
tential and the new one is considered.

It is worth mentioning that crack-tracking algorithms are sensitive to the precision achieved in the computed values of
the stresses (or strains) at the root of the crack. Point-wise convergence on the stress (or strain) values for a given FE formu-
lation is a research topic which deserves in-depth investigation.

4. Validation examples

In this Section, the proposed localized damage model based on a crack-tracking technique is validated by means of
numerical structural examples. First, a simple benchmark example consisting in a holed strip subjected to uniaxial tension
is analyzed. The second validation example is a three point bending test on a concrete beam. Then, a more complicated case
study is considered, that is the simulation of a mixed-mode bending test on a concrete beam. Finally, the analysis of a ma-
sonry semicircular arch is presented, for the particular case of asymmetrical vertical load.

Calculations are performed with an enhanced version of the finite element program COMET [39], developed at the Inter-
national Centre for Numerical Methods in Engineering (CIMNE, Barcelona). The problem is solved incrementally in a (pseu-
do) time step-by-step manner. Within each step, a modified Newton–Raphson method (using the secant stiffness matrix),
together with a line-search procedure, is used to solve the corresponding nonlinear system of equations. Convergence of
a time step is attained when the ratio between the norm of the iterative residual forces and the norm of the total external
forces is lower than 1%. Pre- and post-processing are done with GiD [40], also developed at CIMNE.

4.1. Holed strip under uniaxial traction

The numerical analysis of a holed strip subjected to uniaxial stretching is considered, in order to point out the difference
between a traditional smeared damage model and its enhanced version improved by a crack-tracking algorithm.

This example has been already solved in [27] making use of a global crack-tracking technique. The same material data are
considered: Young’s modulus E = 30 GPa, Poisson’s ratio v = 0.2, tensile strength f0 = 2 MPa and mode I fracture energy

Fig. 6. Maximum curvature criterion: (a) tip element correction and (b) neighbour elements chosen to compute Vc (with thickened sides).
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Gf = 100 J/m2. The specimen size is 200 � 400 mm2 and the radius of the perforation is equal to 10 mm. Axial vertical dis-
placements are applied to both the strip ends. Since the problem is symmetrical, only the right half of the computational
domain is considered and discretized in two different unstructured meshes with average mesh-sizes of he = 5 mm (2023
nodes) and he = 2.5 mm (7648 nodes). The problem is analyzed assuming two-dimensional plane strain conditions.

First, the traditional smeared damage model is considered in calculations. Fig. 7 shows the computed deformed shapes
and tensile damage contours in the two different meshes for a (half)-imposed vertical displacement of 0.1 mm. As shown,
the crack grows from the perforation, then it propagates horizontally and it suddenly deviates from the expected correct
path, following a line of FEs inclined of about 30�. This result is definitely spurious and strongly dependent on the considered
spatial discretizations.

Then, the damage model based on a local crack-tracking technique is adopted in the analyses. The choice of the tracking
parameters is irrelevant in this example. In fact, rexcl definition is not necessary since a unique crack is expected. No correc-
tion of the crack direction is required because the stress field is uniformly uniaxial, so amax and rneigh are irrelevant.

Fig. 8 shows how the crack propagates correctly along the horizontal axis of symmetry, without following any ‘‘favour-
able” path given by the considered meshes. Fig. 9 shows the (half)-load vs. (half)-imposed vertical displacement curves ob-
tained in the two analyses with local crack-tracking technique. As shown, the results are remarkably mesh-size independent.

It is worth noticing that the results presented in Figs. 8 and 9 are identical to the ones obtained in [27] by a global crack-
tracking technique because the meshes used are the same and both the algorithms predict exactly a horizontal crack. Nev-
ertheless, the global tracking approach is more computationally expensive than the local one, since it is necessary to solve a
conduction-like problem at each step of the analysis. The local crack-tracking algorithm, on the other hand, stands out be-
cause of its efficiency and lower computing time. In fact, if the analysis with he = 2.5 mm is run in a standard PC equipped
with a single Pentium 4 – 3.2 GHz, 2 GB Ram – processor, the absolute CPU time results equal to 194.97 s using the global

Fig. 7. Deformed mesh (�100) and tensile damage contour with a smeared damage model: mesh with average size he = 5 mm (a) and mesh with average
size he = 2.5 mm (b).

2440 M. Cervera et al. / Engineering Fracture Mechanics 77 (2010) 2431–2450



Author's personal copy

Fig. 8. Deformed mesh (�100) and tensile damage contour with the localized damage model: mesh with average size he = 5 mm (a) and mesh with average
size he = 2.5 mm (b).
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Fig. 9. Load vs. displacement for holed strip with the localized damage model. Comparison among different mesh-sizes.
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tracking and equal to 148.19 s using the local tracking. Since the computing time for the classical SCA is equal to 132.98 s, the
additional calculation effort for the local crack-tracking is only 24.5% of that required for the global one.

4.2. Three point bending beam

The second example is a three point bending test on a notched concrete beam [41] whose dimensions and boundary con-
ditions are given in Fig. 10. The behaviour of the proposed local crack-tracking algorithm in bending problems is investi-
gated, as well as the influence of the load step size.

The mesh is constituted by 2380 elements and 1248 nodes. The FEs average size is he = 2 mm in the proximity of the
cracking zone. The two adopted load incrementation strategies consist of 100 and 1000 load steps; accordingly, the vertical
displacement d = 1 mm is applied in the midpoint through steps of magnitude 1 � 10�2 mm and 1 � 10�3 mm. The material
data are: Young’s modulus E = 20 GPa, Poisson’s ratio v = 0.2, tensile strength f0 = 2.4 MPa and mode I fracture energy
Gf = 113 J/m2. The beam has thickness equal to 100 mm and it is analyzed under two-dimensional plane strain assumptions.

As explained in Section 3.3, the maximum curvature criterion is necessary in the case of flexure problems to avoid the
crack ‘‘about-turn” phenomenon (Fig. 5). Accordingly, several FE analyses have been executed in order to assess the influence
of amax on the results. With a step magnitude of 1 � 10�2 mm, values amax 6 50� predict the correct crack direction, see
Fig. 11. For greater values of amax, the predicted crack suffers from sharp changes of direction during its propagation, leading
to incorrect results. For a smaller step magnitude of 1 � 10�3 mm, the aforementioned upper limit increases to amax 6 60� .

Fig. 12 shows the comparison between the experimental [41] and the numerical load–displacement curves. Note that the
curves obtained with the two different load step sizes tally very closely. Good agreement is achieved, both in terms of load
peak value and energy dissipation in the nonlinear range.

Fig. 10. Three point bending test setup [41].

Fig. 11. (a) Damage in the bending beam, (b) detail of crack and (c) deformed mesh (�35).
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Definition of rexcl is not necessary in this example since it presents a unique crack. Also, an adequate number of neighbour
elements is selected with rneigh P 10 mm in order to reproduce the correct straight direction of the crack.

4.3. Mixed-mode bending beam

The third example is a plane-strain notched beam subjected to mixed-mode bending test. The experimental evidence re-
ported in [42] is simulated by means of the proposed model. Fig. 13 depicts the geometry of the problem and the boundary
conditions applied to the concrete beam. In a first case the stiffness at the upper left support is assumed equal to zero
(K = 0, i.e. a three point bending beam), while in a second case is infinite (K =1, i.e. a four point bending beam). The load
P is applied by imposing vertical displacements. The following material properties are assumed for concrete: Young’s mod-
ulus E = 38 GPa, Poisson’s ratio v = 0.2, tensile strength f0 = 3 MPa and mode I fracture energy Gf = 69 J/m2. The computational
domain is discretized in 13,443 triangular elements, with a total number of 7028 nodes. The average mesh-size in the zone
interested by the tensile fracture is he = 2.5 mm.

Fig. 14 shows the computed deformed shapes at collapse obtained assuming amax = 20� for the specimen 1 (three point
test) and amax = 32� for the specimen 2 (four point test). In the former analysis it is assumed rneigh = 5 mm while in the latter
rneigh = 10 mm. The definition of rexcl is not necessary in these examples since they present a unique crack. Fig. 15 shows the
comparisons between the experimental and the numerical crack tracks, in which it is possible to appreciate a remarkable
agreement. Fig. 16 presents the load vs. CMOD curves for specimens 1 and 2. In the first case (Fig. 16a), the numerical curve
is quite similar to the experimental ones, even if the numerical model slightly underestimates the strength in the last part of
the simulation. In the second test (Fig. 16b), the concordance of numerical result with the experimental evidence is clear,
until a sudden collapse occurs for CMOD = 0.11 mm.
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Fig. 13. Mixed-mode bending test setup [42].
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Fig. 14. Numerical deformed shapes (�100 and �300) at collapse and details of cracks: (a) specimen 1 (three point test) and (b) specimen 2 (four point
test).

Fig. 15. Comparison between the experimental and numerical crack tracks for the specimens 1 and 2.

Fig. 16. Load vs. CMOD for the specimen 1 (a) and the specimen 2 (b).
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For specimen 2, a maximum curvature angle amax = 32� has been chosen in order to avoid sharp changes of the crack
direction. Since the crack is straight, the assumed value rneigh = 10 mm is irrelevant for the result shown in Fig. 14b.

A sensitivity analysis regarding the parameters used for the tracking algorithm has been carried out for specimen 1, be-
cause it presents an interesting case of a crack with a certain curvature. The first parameter which has been investigated is
amax because it plays a key role in the crack direction correction through the maximum curvature criterion, as shown in Sec-
tion 4.2. Values of amax 6 55� are necessary to avoid sharp changes of the crack direction. Below this upper-bound value,
some variations in the numerical crack track can be appreciated for amax = 40� and then for amax = 20�. It is noticed that there
is an initial length of the crack of about 40 mm which is insensitive to the variation of the tracking parameters. It is at this
distance from the notch where the algorithm comes into play. This is evident in Fig. 17, where the computed crack tracks
(depicted by the damaged elements) can be compared to the experimental envelope. Once the crack ‘‘about-turn” phenom-
enon is avoided, thanks to the restriction imposed by amax, the effect of the choice of rneigh is investigated. Results corre-
sponding to values of rneigh = 20, 10 and 5 mm are shown. Values of rneigh > 20 mm yield the same results as with
rneigh = 20 mm. On one hand, Fig. 17 shows that for rneigh = 20 mm the resulting crack track is almost straight. Values of
rneigh = 10 mm or rneigh = 5 mm, on the other hand, allow the crack to change direction during propagation. For amax = 20�
and rneigh = 5 mm the numerical crack track lies entirely inside the experimental envelope.

Fig. 17. Specimen 1: numerical crack track sensitivity to rneigh and amax.

Fig. 18. Semicircular masonry arch: (a) geometry (m); (b) thrust line and plastic hinges obtained via limit analysis [43].
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Fig. 19. Comparison between load vs. vertical displacement curves for limit analysis and smeared damage model under load or displacement control.

Fig. 20. Smeared damage model (analysis under force control): cracks growth at different stages of the calculus and final collapse mechanism (amplification
of mesh deformation: �100).
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4.4. Asymmetrically loaded semicircular arch

The fourth example consists in a semicircular arch with thickness and width equal to 1 m and a radius of 5 m. Both the
supports are fixed and a vertical load is applied according to the scheme reported in Fig. 18a. The following material prop-
erties are considered for masonry: Young’s modulus E = 5 GPa, Poisson’s ratio v = 0.2, tensile strength f = 0.2 MPa and mode I
fracture energy Gf = 10 J/m2. All the numerical analyses are carried out under the hypothesis of plane strain, with unitary
thickness assumed. Gravitational loads are applied to the arch, before a vertical load is monotonically increased by consid-
ering load steps of 3 kN in the case of force control or increments of 0.05 mm under displacement control. The computational
domain is discretized in 11,324 triangular elements, with a total number of 5989 nodes and a average mesh-size he = 50 mm.

Before the numerical analyses, a static limit analysis has been carried out in order to assess the ultimate load value (about
150 kN) and the position of the plastic hinges, defined by letters A–D in Fig. 18b. Such results have been also validated
through the RING software [43].

Then, the masonry arch behaviour is studied by means of the traditional smeared damage approach, considering both the
load and the displacement control analyses. Fig. 19 shows the curve of load vs. vertical displacement in the application point
of force P. As can be seen, the ultimate load calculated value is quite similar to the one derived by the limit analysis.

Fig. 20 presents the damage distribution at stages 1–5 (refer to Fig. 19) of the calculus carried out under force control. The
attention is focused on the locations where a hinge development is expected, i.e. the points A–D of Fig. 18b. The structural
behaviour remains linear until P = 110 kN, which corresponds to stage 1. Damage occurs first at points B and D, which are

Fig. 21. Smeared damage model (analysis under displacement control): cracks growth at different stages of the calculus and final collapse mechanism
(amplification of mesh deformation: �100).
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subjected to the highest values of tensile stress. Then, the damaged zone happens in such points, as shown at stage 3. At
stage 4, cracks B and D still remains radially oriented, while at points A and C a quite distributed damage occurs at the extra-
dos. At stage 5, crack C progresses downwards and spreads over a quite extended region, similar to a bulb. After stage 5, as
soon as crack A occurs, sections B, C and D damage completely and the arch collapse mechanism is activated. No more equi-
librium points are found under load control.

Fig. 21 presents the results of the analysis under displacement control. Compared to the previous analysis, it is possible to
detect the unloading occurring after the formation of cracks B and D (branch 1–2 of Fig. 19). At stage 2, crack B is not as
spread as the equivalent one obtained under load control. Therefore, it is possible to conclude that in the smeared damage
approach the solution depends on the particular loading path followed. Another unloading occurs after the formation of
cracks A and C (branch 4–6 of Fig. 19). As shown in Fig. 21, both the cracks follow a path given by the spatial discretization
adopted. Therefore, it is evident the spurious mesh-bias dependence of the solution. After stage 6, the structure still presents
a low stiffness, until another unloading is discovered (point 7 of Fig. 19), which corresponds to the formation of a hinge in B
(see Fig. 21, in which crack B is shown before and after the jump).

Finally, the arch is analyzed by considering the localized damage model with the proposed crack-tracking technique. The
following correction parameters are assumed for the maximum curvature criterion: amax = 30� and rneigh = 300 mm. The for-
mer has been chosen in order to avoid spurious changes of cracks direction, whereas the latter is the minimum value

Fig. 22. Comparison between LOAD vs. vertical displacement curves for limit analysis and localized damage model under load or displacement control.

Fig. 23. Localized damage model: (a) detail of cracks at collapse and b) collapse mechanism (amplification of mesh deformation: �100).
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necessary to reproduce correctly the radial direction of cracks. The exclusion radius rexcl has been assumed equal to
3000 mm, making reference to the positions of the plastic hinges derived from the previous limit analysis. However, values
within the wide range 1500mm 6 rexcl 6 3200mm lead to a correct prediction of the hinges positions.

Fig. 22 shows the curve of load vs. vertical displacement in the application point of force P. In the case of displacement
control, the model is able to capture the unloading occurring after the formation of the first crack, denoted by branch 2–3. It
is worth noticing that from point 4 the response of the analyses under force or displacement control are almost the same, as
well as the cracks growth (Fig. 23a) and the collapse mechanism (Fig. 23b). Moreover, the damage distribution computed
thanks to the tracking technique does not follow the mesh-bias, ensuring the correct expected solution of radial cracks.

5. Conclusions

This paper presents a local crack-tracking technique for the numerical modelling of tensile cracks in quasi-brittle mate-
rials. The classical Smeared Crack Approach is improved by forcing the crack to develop along a single row of finite elements,
as a function of the direction of the principal tensile stress. The algorithm works with a flag system where the finite elements
which are allowed to damage during the current time step are appropriately labelled.

The proposed model has shown the following remarkable features:

� The simulation of the damage distribution in ultimate conditions is more realistic than in the classical SCA. The localized
cracks predicted by the tracking model reproduce consistently the ones usually experienced by concrete or masonry
structures, which develop gradually and lead to the full collapse mechanism.
� Compared to the classical SCA, it does not require a significant additional computation cost. Compared to the global crack-

tracking techniques, the proposed algorithm requires a less intensive computational effort.
� The dissipation is element-size independent due to the regularization procedure dependent on the material properties

and the characteristic length.
� The analysis results are mesh-bias independent, ensuring the solution objectivity when different orientations of the mesh

are considered in the discrete problem.
� The crack track correction, performed according to a maximum curvature criterion, avoids the spurious changes of prop-

agation direction which are usual in bending dominated problems.
� The validation examples have shown the efficiency and the robustness of the local crack-tracking technique, which turns

out to be suitable for tension and mixed-mode cracking problems.

The sensitivity analyses with respect to the tracking parameters amax, rneigh and rexcl have assessed their influence on
numerical solutions:

� The maximum curvature angle amax is the most influential parameter, since it prevents the crack from turning back in
bending problems. The relative independence of the results with respect to the chosen value for amax has been demon-
strated, even for different load steps.
� The definition of rneigh is useful to reproduce the correct track of curved cracks. It can be interpreted as a refinement

parameter for crack track correction.
� The exclusion radius rexcl is necessary in multi-crack problems in order to represent the correct failure mechanism.

Given the sensitivity of the obtained crack paths on the selected parameters (amax in particular), sensitivity analyses sim-
ilar to the ones conducted in the paper are advisable when the proposed tracking algorithm is used to predict crack tracks
without the help of known experimental results. This remark is of course applicable to any of the existing crack-tracking
algorithms. Sensitivity analyses are almost mandatory in nonlinear computations in order to assess the reliability of the re-
sults obtained.
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